Simulink® Coder™ Release Notes

<

MATLAB&SIMULINK

¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ Release Notes
© COPYRIGHT 2011-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

Contents

R2022b

Model Architecture and Design 1-2

Configure Simulink.LookupTable object to support differently sized table

and breakpoints 1-2
Functionality being removed orchanged 1-3
Code Interface Configuration and Integration 1-5
Calibration File Customization 1-5
Functionality being removed orchanged 1-5
Code Generation 1-6
Example models attached to examples and renamed 1-6
Function and file packaging changes for reusable library subsystems 1-6
Deployment 1-8
CMake toolchain definitions for build process 1-8
Creation of custom CMake toolchain definitions 1-8
Toolchain setting Clang v3.1 | gmake (64-bit Mac) renamed 1-8
Target Language Complier search functions for regular expressions 1-8

Automatic memory configuration for XCP-based external mode simulations

.. 1-9
XCP-based external mode simulations with generated C++ code 1-9

XCP external mode support for Simulink.ImageType 1-10
Performance i e 1-11
SIMD code for bitwise and shift operations 1-11
Check bug reports forissuesand fixes 1-12
R2022a

Model Architecture and Design 2-2
Specify tunable parameters for protected models 2-2
Redesigned Custom Code Pane of Model Configuration Parameters 2-2
Functionality being removed orchanged 2-4

Code Interface Configuration and Integration 2-5

Calibration file customization 2-5
Code Generation 2-6
ARMG64 code for Apple platforms, 2-6
Scoped enum classes for C++11 2-6
GRT-based system target files no longer support SimStruct 2-7
Generate code for dlnetwork workflows that use deep learning arrays . . . 2-7
Deployment 2-8
Files modelsources.txt and defines.txt not generated 2-8
Reduced bandwidth contiguous signal streaming by using XCP DAQ packed
MO . ot e 2-8
Build process support for Unicode characters 2-8
Microsoft Visual C++ 2022 toolchain support for Windows 2-8
Performance e 2-9
SIMD code for reduction operations 2-9
Improved performance of generated generic C/C++code 2-9
Verification 2-11
MATLAB Coder Interface for Visual Studio Code Debugging 2-11
Check bug reports forissuesand fixes 2-12
R2021b
Model Architecture and Design 3-2
New ID for check "Check for relative execution order change for Data Store
Read and Data Store Write blocks" 3-2
Protection for models that use noninlined S-functions 3-2
Code Interface Configuration and Integration 3-3
Changes to model hierarchy requirements 3-3
Calibration file customization 3-3
Configure additional properties from the Code Mappings editor 3-3
View In Bus Element and Out Bus Element blocks in a hierarchy in the Code
Mappings editor 3-4
Code Generation 3-5
Code generation report enhanced with new functionalities 3-5
Accessibility of step entry-point functions generated for models designed for
multitasking and concurrency streamlined 3-6
Target hardware data management 3-6

vi Contents

File size reduction by using memset function for zero initialization 3-7
Data reference of model parameter in model.rtw 3-8
Model parameter value in TLC 3-9
Language standard parameter for configuring C/C++ language standard
.. 3-9
Deployment 3-10
CMake ships with MATLAB i 3-10
XCP external mode simulation through concurrent execution 3-10
Simplified creation of XCP target connectivity objects 3-10
Parameter upload for external mode simulations 3-10
Hold Updates button for Run on Custom Hardwareapp 3-11
removeSourceFiles function for RTW.BuildInfo object 3-11
Performance 3-12
Generation of SIMD code for Intel hardware 3-12
Optimized code for models containing multiple Interpolation Using
Prelookup blocks 3-12
Check bug reports forissuesand fixes 3-15
R2021a
Model Architecture and Design 4-2
Code reuse across models for S-function inside library subsystems 4-2
Parameter name updated to copy code mappings 4-2
Code Interface Configuration and Integration 4-3
Invalid values detection after changing enum definitions in custom system
target file 4-3
Calibration file generation 4-3
Code configuration for data dictionary defaults 4-3
ASAP?2 system target file beingremoved, 4-3
Functionality being removed orchanged 4-3
Code Generation e 4-5
simstruc types.h not generated in rtwtypes.h 4-5
Target hardware data management 4-5
Functionality being removed orchanged 4-5
Deployment 4-7
Target connectivity customization for external mode simulations 4-7
XCP external mode simulation on big endian target hardware 4-7
Build commands slbuild and rtwbuild unified 4-7
Compiler default language standards to compilecode 4-7
packNGo for CMake configurationfiles 4-8

Functionality being removed orchanged 4-8

Performance e 4-9
Reduced zero initializationcode 4-9
Check bug reports forissuesand fixes 4-11
R2020b
Model Architecture and Design 5-2
Automatically package protected models with their dependencies 5-2
Execution order check for Data Store Memory blocks 5-2
Code Interface Configuration and Integration 5-4
Streamlined model data configuration for code generation 5-4
Functionality being removed orchanged 5-3
Code Generation 5-10
Code descriptor information for tunable breakpoint set data in Lookup table
blocks . .. o e 5-10
Code generation using C++11 standard math library 5-10
Clearer pattern of ordering of local variable declarations 5-10
Enhanced status messages for code generation 5-11
Removal of spacein #define 5-11
Query capability for target.get function 5-11
Model Advisor Updates i 5-12
Functionality being removed orchanged 5-12
Deployment e 5-13
codebuild function for independent compilation of generated code 5-13
Configuration files for CMake build system 5-13
slbuild builds multiplemodels 5-13
Build Summary for Top Model and Referenced Models 5-13
Parallel build continues after MATLAB worker stoppage 5-14
Dynamic signal selection and triggering for XCP external mode simulations
... 5-14
XCP external mode simulation supports half-precision data type 5-14
Intel C and C++ toolchain use with Windows 5-14
Simulink Coder Support Package for NVIDIA Jetson CPUs: Generate, build,
and deploy Simulink models on Jetson CPU 5-15
Functionality being removed or changed 5-15
Performance i e 5-16
Faster code generation without generating model reference simulation
BATgEtS .« o 5-16

viii Contents

Unused variables elimination for n-D Lookup Table blocks in generated code

... 5-16
Verification 5-17
Check bug reports forissuesand fixes 5-18

R2020a
Model Architectureand Design 6-2
Digital certificate signing for protected models 6-2
Rate Transition block deterministic mode support for concurrent execution
.. 6-2
C/C++ message-based communication provides length argument for service
fUnCtions 6-2
C message-based communication defines service data types in one location
ingenerated code 6-2
C/C++ message-based communication available for reusable subsystems
.. 6-3
Protect models for use with a Simulink license 6-3
Computer Vision Toolbox Interface for OpenCV in Simulink: Import OpenCV
code into Simulink 6-3
Data, Function, and File Definition 6-4
Constant parameters outside const params.cfile 6-4
Code Generation, 6-5
Lookup Table blocks code description in generated code by using Code
Descriptor API 6-5
Documentation for tlc() function being removed 6-5
Data interface type name changes in Code Descriptor API 6-5
Deployment 6-7
Intel C and C++ toolchain support for Windows 6-7

Parallel pool automatically starts for parallel building of referenced models

.. 6-7
Simplified workflow for external mode Run on Custom Hardwareapp 6-7
Limit data quantity logged during XCP external mode simulation 6-8
XCP external mode simulations on Mac computers 6-8
Checksums determine whether object code isuptodate 6-8

Performance 6-9
Verification 6-10
Check bug reports forissuesand fixes 6-11

ix

X

Contents

R2019b

Model Architecture and Design

Generate C++ Code for Software Compositions with Message-Based
Communication

Model integration with row-major data for MATLAB Function block and
Stateflow charts

TLC block files and rtwmakecfg files for S-functions

Data, Function, and File Definition

Duplicate enumeration member names in generated code

Code Generation i

Simulink Coder contextual tabs on the Simulink Toolstrip
Model configuration and code generation by using Simulink Coder Quick
Start . e e
Export of hardware devicedata
Data validation for hardware device features
Upgrade of hardware device definitions
Model Configuration Parameters Symbols pane renamed to Identifiers . . .
Simulink cache file support for code generation artifacts
Retrieve information about shared local data stores in the generated code
by using Code Descriptor APT

Deployment

Run on Custom Hardware app for external mode simulations
Specify CacheFolder or CodeGenFolder separately
Removal of support for STF par cfgchk

packNGo packages buildInfo.mat files for folder hierarchy

7-2

Check bug reports forissuesand fixes 7-9
R2019a

Model Architecture and Design 8-2
Functionality being removed orchanged 8-2
Data, Function, and File Definition 8-3
Code Generation e 8-14
Register new hardware devices 8-4
Japanese translation for code generationreport 8-1
Simulink Coder contextual tabs on the Simulink Toolstrip Tech Preview . . 8-4

Retrieve information about internal data in the generated code by using
Code Descriptor API e 8-14

Deployment

8-6
Separate makefile for shared code and simplified template makefiles 8-6
New configuration property in shared utility checksum hash table 8-6
Read and write data over serial port using BeagleBone Blue SCI blocks . . 8-6
Measure data using BeagleBone Blue sensor blocks 8-6
XCP slave memory allocation for external mode signal logging 8-7

Performance 8-8
Inplace updates for Assignment and Bus Assignment blocks 8-8

New location for optimization configuration parameter 8-8
Verification e 8-9
Check bug reports forissuesand fixes 8-10
R2018b

Model Architecture and Design 9-2
Data, Function, and File Definition 9-3
Code Generation i 9-4

Row-Major Array Layout: Simplify integration with external C/C++ code for

Lookup Table and otherblocks 9-4
Hardware Implementation Parameters: ProdHWDeviceType and

TargetHWDeviceType are case-insensitive 9-6

Deployment 9-7

XCP External Mode Simulation: Animate Stateflow charts and run pure
integercode 9-7

ST Nucleo Tuning and Monitoring: Perform external mode simulation on ST
Nucleo for parameter tuning and signal monitoring by using XCP over
TCP/IPor UART (Serial) 9-7

STMicroelectronics Nucleo Boards: Support for TCP/IP and UDP Blocks

.. 9-7
Build Process: Library and header files for model reference hierarchy are
notcopied 9-7
Build Process: MATLAB INCLUDES is not required in custom template
makefiles 9-8

Simulink Coder Support Package for VEX EDR V5 Robot Brain: Generate,
build, and deploy Simulink models on VEX EDR V5 Robot Brain 9-8

Support for BeagleBone Blue hardware available on Mac OS 9-8

Extended list of blocks in BeagleBone Blue support package 9-8

Performance 9-11

xi

Faster generated code for matrix operations in the MATLAB Function block

... 9-11
Verification 9-12
Check bug reports forissuesand fixes 9-13

R2018a
Model Architecture and Design 10-2
Protected Models: Use concurrent tasking 10-2
Model Advisor Check: Enhance check for blocks in your model that are not
supported by code generation 10-2
Configuration Reference in Data Dictionary: Quickly select code generation
target for model reference hierarchy 10-2
Data, Function, and File Definition 10-3
SimulinkGlobal Name Change: Storage class renamed to Model default
... 10-3
Convert to Parameter Object: Apply storage classes to numeric variables
... 10-3
Code Generation, 10-4
Code Descriptor: Retrieve meta information about generated code by using
MATLAB APl . . 10-4
Code Generation Advisor: Updates to parameter recommendations for
0bjeCtiVes . . . e 10-4
Code Obfuscation: Protect intellectual property by using rtwbuild option
... 10-5
Hardware Implementation Settings: Inaccurate values corrected 10-5
Deployment 10-6
Build Process: Specify toolchain for template makefile 10-6
External Mode Simulation: Use XCP communication protocol 10-6
External Mode Simulation: EXT MODE is not required in template makefile
... 10-6
Build Process Status for Parallel Builds: View and interact with build
process status for parallel builds of referenced model hierarchies 10-7
BeagleBone Blue Support Package: Generate, build, and deploy Simulink
models on BeagleBone Blue hardware 10-7
Performance e 10-8
Configuration Set: New location for optimization model configuration
PATAMELETS . . ot 10-8
Verification 10-9

xii Contents

Check bug reports forissuesand fixes 10-10

R2017b
Model Architecture and Design 11-2
C++ Functions: Generate C++ code from Simulink functions, including

functions that respond to initialize, reset, and terminate events 11-2

Data, Function, and File Definition 11-3

Tunable Parameters: Tune parameters in model workspace 11-3
Virtual Buses Across Model Reference Boundaries: Check for large numbers

of function arguments caused by virtualbuses 11-3

Code Generation 11-4

Configuration Parameters Dialog Box: View your model and code generation
configuration parameters in unified dialog box with search capability

... 11-4
Simplified Build Folder Layout: Generate code for different hardware
settings in separate folders 11-5
Warning Messages: Build process diagnostic warnings in Diagnostic Viewer
... 11-5
Code Generation Advisor: Updates to parameter recommendations for
0bJeCtIVES . . . 11-5
Performance i e 11-6
Fast Fourier Transforms in a MATLAB Function Block: Generate code that
takes advantage of the FFTW library 11-6
Check bug reports forissuesand fixes 11-7
R2017a
Model Architecture and Design 12-2
Subsystem Reuse Across Models: Reuse subsystems with naming control
and global Data Store Memory blocks across models 12-2
TMF and EXTMODE fields optional in TLCfile 12-2
Data, Function, and File Definition 12-3
Association of root-level Outport block with Simulink.Signal object 12-3

MAT-ile logging for root-level Outport blocks with storage class other than
AULO .. 12-3

xiii

xiv

Contents

Model Explorer accessibility for code generation settings of lookup table

and breakpoint objects 12-3
Code Generation, 12-4
Build Process Customization for S-Functions: Customize generated
makefiles with RTW.BuildInfo functions in makecfgm 12-4
Source file includes shared utility headerfile 12-4
Generated code for Rate Transition block variables with volatile qualifier
... 12-4
IncludeMdlTerminateFcn not checked against efficiency objectives 12-6
More information in code generation report summary 12-6
Deployment 12-7
NXP FRDM-K64F Board: Create models using Analog Output, Quadrature
Encoder, Serial, and UDP blocks 12-7
Support for new board STMicroelectronics Nucleo F746ZG 12-7
Support for new board STMicroelectronics Nucleo F411RE 12-7
Gyroscope and LCD blocks added to ARM Cortex-based VEX
Microcontroller e 12-7
Performance e 12-8
Dynamic Memory Allocation for MATLAB Function Block: Generate C code
that uses dynamic memory allocation 12-8
Check bug reports forissuesand fixes 12-10
R2016b
Model Architecture and Design 13-2
Initialize Function and Terminate Function Blocks: Generate code for
initialize, reset, and terminate events 13-2
State Reader and State Writer Blocks: Generate code that reads or writes
state values to set terminal or initial conditions 13-2
Updates to protected model message identifiers 13-3
Data, Function, and File Definition 13-4
Name and Storage Class for Outport: Configure name and storage class for
code generation directly on root-level Outport blocks 13-4
ASAP? file generation for bus signals and parameters 13-4
Model Data Editor for applying storage classes to Inport blocks, Outport
blocks, signals, and Data Store Memory blocks 13-6
Storage of lookup tables for calibration according to ASAP2 and AUTOSAR
standards 13-7
More explicit purpose for SimulinkGlobal storage class 13-7
Additional tunability support for expressions 13-8
Code Generation 13-9

Data Exchange Interface: Use independent controls to configure C API,

ASAP2, and external mode 13-9
Standard math library changes 13-9
SupportVariableSizeSignals not checked against efficiency objectives .. 13-10
Use default installation folder on Windows system with ReFS file system

.. 13-10
Deployment 13-11
Simulink Coder Target Support Packages: Generate code for NXP Freedom

boards and STMicroelectronics Nucleo boards 13-11
Generate code for STMicroelectronics Nucleo boards 13-11
Support for I2C and PWM blocks for FRDM-KL25Z board 13-11
Support for new blocks for FRDM-K64F board 13-11

Check bug reports forissuesand fixes 13-13

R2016a

Model Architecture and Design 14-2
Variants: Generate code for active variant choice as specified with Variant

Sink and Variant Source blocks 14-2
Protected Model Callbacks: Define callbacks for customized protected

models 14-2
Simulink Coder Student Access: Obtain Simulink Coder as student-use add-

on product or with MATLAB Primary and Secondary School Suite 14-3
Model Block Virtual Buses: Interface to Model blocks by using virtual buses,

reducing data copies in the generatedcode 14-3

Data, Function, and File Definition 14-8

Tolerance of data type mismatch between bus elements and tunable

structure fields 14-8
Model Advisor check for data type mismatches between bus elements and
structure fields 14-8
Simplified method to apply storage classes to signals and states 14-8
Conflict between different storage classes applied to same signal 14-10
Visibility and functionality changes for programmatic properties of data
0bJECtS . . 14-10
Code Generation 14-12
Simplified Configuration Parameters: Configure model more easily via
streamlined code generationpanescoiv.i.. 14-12
Add macro definitions to customcode o oL 14-15
Faster generated code for linear algebra in the MATLAB Function block
.. 14-16
Build button removed from Configuration Parameters dialog box 14-16
Deployment e 14-17

xvi

Contents

Hardware implementation parameters enabled by default 14-17
Simulink Coder Support Package for ARM Cortex-Based VEX
Microcontroller i e 14-17

Performance e 14-18

Removal of Minimize data copies between local and global variables

parameter e 14-18
Check bug reports forissuesand fixes 14-20
R2015aSP1
Bug Fixes
Check bug reports forissuesand fixes 15-2
R2015b
Model Architecture and Design 16-2
Support for C++ code generation in protected models 16-2
Reusable code for subsystems containing Stateflow charts 16-2
Header file change for model containing messages in Stateflow charts
... 16-2
Type definitions in rapid acceleratormode 16-2
Data, Function, and File Definition 16-3
Configuration parameter Inline parameters name and functionality change
... 16-3
Code Generation i, 16-5
MinGW-w64 Compiler Support: Compile MEX files on 64-bit Windows with
free compiler 16-5
Internationalization: Generate and review code containing mixed languages
for differentlocales 16-5
Hardware Implementation Selection: Quickly generate code for popular
embedded ProcessorsSot 16-6
Smarter Code Regeneration: Regenerate code only when model settings
that impact code are modified 16-7
Toolchain approach with custom targetsadded 16-8
Build configuration setting can affect setting for toolchain 16-8
Deployment 16-9
External mode MEX-file build requires sl services library 16-9

Performance 16-10

Consolidation of redundant if-else and for statements in separate code

5T 10 16-10
More efficient code for multirate models 16-12
Check bug reports forissuesand fixes 16-2
R2015a
Model Architecture and Design 17-2
Command-line APIs for protected models 17-2
Improved use of workers for faster parallel builds 17-2
Usability enhancements for protected models 17-2
No code reuse for function-call subsystems with mask parameters 17-3
Check bug reports forissuesand fixes 17-5
R2014b
Model Architecture and Design 18-2
Code generation for Simulink Function and Function Caller blocks 18-2
Option to suppress generation of shared constants 18-2
Usability enhancements for protected models 18-2
Data, Function, and File Definition 18-3
Enumerated data type sizecontrol 18-3
Vector and matrix expressions as model argument values 18-3
Code Generation 18-4
Option to separate output and update functions for GRT targets 18-4
Highlighted configuration parameters from Code Generation Advisor

5] 0101 1 18-4
License requirement for viewing code generation report 18-4
Improved report generation performance 18-4

Intel Performance Primitives (IPP) platform-specific code replacement
libraries for cross-platform code generation 18-4
Deployment e 18-6
Support for Eclipse IDE and Desktop Targets has been removed 18-6
Performance i e 18-7

xvii

xviii

Contents

Block reduction optimization improvement 18-7
Check bug reports forissuesand fixes 18-9
R2014a
Model Architecture and Design 19-2
Custom post-processing function for protected models 19-2
Context-sensitive help for the Create Protected Model dialog box 19-2
Data, Function, and File Definition 19-3
C++classgenerationt 19-3
Simpler behavior for tuning all parameters and support for referenced
models 19-3
Improved control of C and C++ code interface packaging 19-4
Multi-instance code error diagnostic for reusable function code and C++
Class COdettt e 19-6
Removal of TRUE and FALSE from rtwtypes.h 19-7
Code Generation i, 19-8
Independent configuration selections for standard math and code
replacement libraries 19-8
Generated code compilation using LCC-64 bit on Windows hosts 19-9
Improved code integration of shared utility files 19-9
Optimized inline constant expansion 19-9
rtwtypes.h included before tmwtypes.h 19-9
Constant block output value used when in nonreusable subsystem 19-10
Deployment 19-11
Support for Eclipse IDE and Desktop Targets will be removed 19-11
Additional build folder information and protected model support for
RTW.getBuildDir function 19-11
Wind River Tornado (VxWorks 5.x) target to be removed in future release
.. 19-11
Performance i 19-13
To Workspace, Display, and Scope blocks removed by block reduction . 19-13
Optimized reusable subsystem inputs 19-13
Check bug reports forissuesand fixes 19-15

R2013b

Model Architecture and Design 20-2
Multilevel access control when creating password-protected models for IP
protection 20-2
Simulink Coder checks in Model Advisor 20-2
Data, Function, and File Definition 20-3
Imported datacanbeshared 20-3
Readability improved for constantnames 20-3
Removal of two's complement guard and RTWTYPES ID from rtwtypes.h
... 20-3
MODEL M macro renamed in static main for multi-instance GRT target
... 20-4
Code Generation, 20-5
Optimized code for long long datatype 20-5
<LEGAL> tokens removed from comments in generated code 20-5
Deployment 20-6
Compiler toolchain interface for automating code generation builds 20-6
Log data on Linux-based target hardware 20-7
Modified file locations and commands for rebuilding external mode MEX
Ales . e 20-7
Performance e 20-8
Reduced data copies for bus signals with global storage 20-8
Customization e 20-9
Support for user-authored MATLAB system objects 20-9
TLC Options removed from Configuration Parameters dialog box 20-9
Check bug reports forissuesand fixes 20-11
R2013a
Data, Function, and File Definition 21-2
Optimized interfaces for Simulink functions called in Stateflow 21-2
Shortened system-generated identifiernames 21-2
Code Generation i 21-4
Shared utility name consistency across builds with maximum identifier
lengthcontrol e 21-4

xix

XX

Contents

Code Generation Advisor available on menubar 214
Code generation build when reusable library subsystem link status changes

... 21-4
Protected models usable in model reference hierarchies 214
Deployment 21-5
Simplified multi-instance code with support for referenced models 21-5
External mode control panel improvements and C APl access 21-5
Hardware configuration relocation from Target Preferences block to
Configuration Parametersdialog 21-6
Support ending for Eclipse IDE in a future release 21-7
GRT malloc target to be removed in future release 21-8
Customization 21-9
MakeRTWSettingsObject model parameter removed 21-9
Check bug reports forissuesand fixes 21-11
R2012b
Unified and simplified code interface for ERT and GRT targets 22-2
Convenient packNGo dialog for packaging generated code and artifacts
... 22-3
Reusable code for subsystems shared by referenced models 22-4
Code generation for protected models for accelerated simulations and
hosttargets 22-4
Reduction of data copies with buses and more efficient for-loops in
generatedcode 22-4
Reduction of cyclomatic complexity with virtual bus expansion 22-4
Simplifying for loop control statements 22-4
Unified rtiostream serial and TCP/IP target connectivity for all host
platforms e 22-5
Constant parameters generated as individual constants to shared location
... 22-5
Code efficiency enhancements 22-5
Optimized code generation of Delayblock 22-5
Search improvements in code generationreport 22-6
GRT template makefile change for MAT-file logging support 22-6

Change for blocks that use TLC custom code functions in multirate

subsystems 22-6
Model rtwdemo_f14 removed from software 22-7
Check bug reports forissuesand fixes 22-8

R2012a
Simplified Call Interface for GeneratedCode 23-2
Incremental Code Generation for Top-Level Models 23-2
Minimal Header File Dependencies with packNGo Function 23-3
ASAP2 Enhancements for Model Referencing and Structured Data 23-3
Ability to Merge ASAP2 Files Generated for Top and Referenced Models
ASAP? File Generation for Test Pointed Signals and States 213
ASAP? File Generation for Tunable Structure Parameters 23-3
Serial External Mode Communication Using rtiostream API 23-4
Improved Data Transfer in External Mode Communication 23-4
Changes for Desktop IDEs and Desktop Targets 234
Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse
Limitation: Paraliel Buiids Not Supported for Desktop Targets 234
Code Generation Report Enhancements 234
Post-build Report Generation 234
Generate Code Generation Report Programmatically 23-5
Searching in the Code Generation Report 23-5
New Reserved Keywords for Code Generation 23-5
Improved MAT-File Logging 23-5
rtwdemo_f14 Being Removed in a Future Release 23-5
New and Enhanced Demos 0., 23-5
Check bug reports forissuesand fixes 23-7

xxi

xxii

Contents

R2011b

n-D Lookup Table Block Supports Tunable Table Size 24-2
Complex Output Support in Generated Code for the Trigonometric
Function Block 24-2
Code Optimizations for the Combinatorial Logic Block 24-3
Code Optimizations for the ProductBlock 24-3
Enhanced MISRA C Code Generation Support for Stateflow Charts 24-4
Change for Constant Sample Time Signals in Generated Code 24-4
New Code Generation Advisor Objective for GRT Targets 24-4
Improved Integer and Fixed-Point Saturating Cast 24-4
Generate Multitasking Code for Concurrent Execution on Multicore
ProcCessors 24-4
Changes for Desktop IDEs and Desktop Targets 24-5
New Target Function Library for Intel IPP/SSE (GNU) 24-5
Support Added for Single Instruction Multiple Data (SIMD) with Intel
Processors 24-5
Reserved Keyword UNUSED PARAMETER 24-5
Target API for Verifying MATLAB® Distributed Computing Server™
Worker Configuration for Parallel Builds 24-5
License Names Not Yet Updated for Coder Product Restructuring 24-6
New and Enhanced Demeos, 24-6
Check bug reports forissuesand fixes 24-7
R2011a
Coder Product Restructuring 25-2
Product Restructuring Overview, 25-2
Resources for Upgrading from Real-Time Workshop or Stateflow Coder
... 25-2
Migration of Embedded MATLAB Coder Features to MATLAB Coder 25-3
Migration of Embedded IDE Link and Target Support Package Features to
Simulink Coder and Embedded Coder 25-3
User Interface Changes Related to Product Restructuring 25-4
Simulink Graphical User Interface Changes 25-4

Changes for Desktop IDEs and Desktop Targets 25-4

Feature Support for Desktop IDEs and Desktop Targets 25-4
Location of Blocks for Desktop Targets 25-5
Location of Demos for Desktop IDEs and Desktop Targets 25-5
Multicore Deployment with Rate Based Multithreading 25-6
Code Optimizations for Discrete State-Space Block, Product Block, and
MinMax Block 25-6
Ability to Share User-Defined Data Types Across Models 25-7
C API Provides Access to Root-Level Inputs and Qutputs 25-7
ASAP2 File Generation Supports Standard Axis Format for Lookup Tables
... 25-7
ASAP?2 File Generation Enhancements for Computation Methods 25-7
Custom Names for Computation Methods 25-7
Ability to Suppress Computation Methods for FIX AXIS When Not Required
... 25-8
Lookup Table Block Option to Remove Input Range Checks in Generated
Code 25-8
Reentrant Code Generation for Stateflow Charts That Use Events 25-9
Redundant Check Code Removed for Stateflow Charts That Use Temporal
Operators e 25-9
Support for Multiple Asynchronous Function Calls Into a Model Block
.. 25-10
Changes to ver Function Product Arguments 25-10
Updates to Target Language Compiler (TLC) Semantics and Diagnostic
Information 25-11
Change to Terminate Function for a Target Language Compiler (TLC)
Block Implementation 25-11
New and Enhanced Demos0iiiinnnnnn.. 25-11
Check bug reports forissuesand fixes 25-12

xxiii

R2022b

Version: 9.8
New Features
Bug Fixes

Compatibility Considerations

R2022b

Model Architecture and Design

1-2

Configure Simulink.LookupTable object to support differently sized
table and breakpoints

Previously, if a model used Simulink.LookupTab'le objects as model arguments, these objects were
required to be of the same size as the table and breakpoints.

In R2022b, in the Simulink.LookupTable object property dialog box, select the new Allow
multiple instances of this type to have different table and breakpoint sizes and Support
tunable size parameters to configure these objects to support differently sized table and breakpoints
and generate code for the model. The code generator produces pointers instead of arrays for the
table and breakpoint fields in the struct definition. These pointers point to arrays that the code
generator allocates outside the struct definition that have the true data of the table and
breakpoints.

For example, consider this model that has an n-D Lookup Table block that is configured with a
Simulink.LookupTab'le object, named LUT1A. LUT1A includes one table with [2 3] dimensions
and two breakpoint data sets with [1 2] and [1 3] dimensions.

2-D T(u)

2x3

This is the generated code for the differently sized table and breakpoints in <model> types.h:

typedef struct {
uint32 T N1;
uint32 T N2;
real T *BP1;
real T *BP2;
real T *T;

} LutObjChild type;

The data is stored in the <model> data.c file:

* Expression: LUT1A.Table

* Referenced by: '<Root>/1-D Lookup Table'
*/
{10, 4.0, 2.0, 5.0, 3.0, 6.0 },

Model Architecture and Design

/* Expression: LUT1A.Breakpoints(0)

* Referenced by: '<Root>/1-D Lookup Table'
*/

{1.0, 2.0 },

/* Expression: LUT1A.Breakpoints(1)
* Referenced by: '<Root>/1-D Lookup Table'
*/
{1.0, 2.0, 3.0 }
b

If your model uses Simulink.LookupTable objects with differently sized table and breakpoints, you
can choose storage classes for each object separately in the model code mappings from the Model
Parameters section on the Parameters tab in the Code Mappings editor or by using the code
mappings programming interface. For the additional arrays generated from the
Simulink.LookupTable object, you can choose a default storage class for the objects in the Model
Parameters section of the Data Defaults tab.

With Embedded Coder®, you can replace code from Lookup table blocks that support differently sized
table and breakpoint objects by using a code replacement library. For more information, see “Code
replacement for lookup tables that support differently sized table and breakpoint objects” (Embedded
Coder).

Functionality being removed or changed

Option to generate S-function from subsystem will be removed
Still runs

The C/C++ Code > Generate S-Function option that is available when you right-click a Subsystem
block will be removed in a future release. Create a protected model instead.

Protected models support modeling patterns that S-function targets do not support, such as function-
call signals at a component interface. Protected models also support features that S-function targets
do not support, such as a read-only web view, password protection, encryption, and digital signing.

By default, the model protection process automatically collects, creates, and packages supporting
files in a project that also contains the protected model. For example, the project contains supporting
files that define global variables that the protected model requires.

To create a protected model, see:

* “Protect Models to Conceal Contents”
* Simulink.ModelReference.protect

To use a protected model, see “Reference Protected Models from Third Parties”.

S-function targets generated from subsystems will continue to work. For information about their
limitations, see “S-Function Target Limitations”.

In R2022b, when you right-click a subsystem and select C/C++ Code > Generate S-Function, the
build process immediately starts code generation and compilation of the S-function. Previously, the
software opened a window, and you were required to click the Build button to initiate the build
process. From the window, you were also able to declare parameters tunable and create a software-
in-the-loop (SIL) block. For information about how you can now perform these tasks, see “C Code

1-3

R2022b

Generation Configuration for Model Interface Elements” and “SIL or PIL Block Simulation”
(Embedded Coder), respectively.

1-4

Code Interface Configuration and Integration

Code Interface Configuration and Integration

Calibration File Customization

Starting from R2022b the Generate Calibration Files tool remembers the last used settings such as
version of the ASAP?2 file, include or exclude comments, and turn off or on the ASAP2 file and CDF file
generation. These settings will be saved in the MATLAB® preferences.

For more information, see “Generate ASAP2 and CDF Calibration Files”.

The Simulink Coder allows you to add, delete, modify, find, filter, fetch measurements, characteristics,
functions, and compu-methods using the programming interface.

Also, the new enhancements allow you to

» Insert custom code fragments in different sections of the ASAP?2 file.

* Modify the Name and Comments for the project and module sections.

* Provide address extension for the ECU address to measurements, characteristics, and axis points.
» Insert functions hierarchy by adding function as subfunction in another function.

For more information, see “Customize Generated ASAP2 File”.

Functionality being removed or changed

Model parameters and parameter arguments returned separately by find function
Behavior change

The find function now returns model parameter arguments separately from model parameters.

Starting in R2022b, to return all elements in the model code mappings that are model parameter
arguments, enter the following.

cm = coder.mapping.api.get('myConfigModel"');
modelParamArgs = find(cm, 'ModelParameterArguments');

To return all elements in the model code mappings that are model parameters, enter the following.

cm = coder.mapping.api.get('myConfigModel"');
modelParams = find(cm, 'ModelParameters');

In previous releases, specifying ModelParameters as the category argument returned both model
parameters and model parameter arguments.

1-5

R2022b

Code Generation

1-6

Example models attached to examples and renamed

In R2022b, these example models have been renamed and are available in the examples indicated in

this table.

R2022a model name

New model name

Example

rtwdemo condinput ConditionalInput “Use Conditional Input Branch
Execution”

rtwdemo_deadpathElim DeadPathElimination “Eliminate Dead Code Paths in
Generated Code”

rtwdemo foreachreuse ForEachReuse “Generate Reusable Code from

For Each Subsystems”

rtwdemo col dlut3d selpl
ane

ColumnDLUT3DSelectPlane

“Direct Lookup Table Algorithm
for Row-Major Array Layout”

rtwdemo col dlut3d selve
ctor

ColumnDLUT3DSelectVector

“Direct Lookup Table Algorithm
for Row-Major Array Layout”

rtwdemo row dlut3d selpl
ane

RowDLUT3DSelectPlane

“Direct Lookup Table Algorithm
for Row-Major Array Layout”

rtwdemo row dlut3d selve
ctor

RowDLUT3DSelectVector

“Direct Lookup Table Algorithm
for Row-Major Array Layout”

rtwdemo mdlreftop TopModelCode “File Packaging for Models
(Code and Data)”
rtwdemo mdlrefbot ReferenceModelCode “File Packaging for Models

(Code and Data)”

rtwdemo row_interpalg

RowInterpolationAlgorith
m

“Interpolation Algorithm for
Row-Major Array Layout”

rtwdemo row lut2d

RowLUT2D

“Interpolation Algorithm for
Row-Major Array Layout”

Function and file packaging changes for reusable library subsystems

Starting in R2022b, the code generator handles function and file packaging of generated code
differently. For reusable library subsystems, the code generator produces subsystem code in the
slprj/target/ sharedutils folder. The subsystem code is shared across models in a model
reference hierarchy for these combinations of subsystem parameters:

Function name options File name options

Auto Use subsystem name
Use subsystem name Use subsystem name
Auto Use function name
Use subsystem name Use function name

Code Generation

For more information, see “Generate Reusable Code from Library Subsystems Shared Across
Models”.

1-7

R2022b

Deployment

CMake toolchain definitions for build process

To build code that you generate from Simulink models, you can now specify CMake toolchain
definitions for:

* Microsoft® Visual C++® and MinGW® on Windows®, GCC on Linux®, and Xcode on Mac
computers, using Ninja and makefile generators.

« Microsoft Visual Studio® and Xcode project builds.

If a supported toolchain is installed on your development computer, you can specify the

corresponding CMake toolchain definition for your model. When you run slbuild, press Ctrl+B, or

run a software-in-the-loop (SIL), processor-in-the-loop (PIL), or external mode simulation, CMake:

1 Uses configuration (CMakelLists.txt) files to generate standard build files.

2 Runs the compiler and other build tools to create executable code.

For more information, see “Configure CMake Build Process” and https://www.mathworks.com/
support/requirements/supported-compilers.html.

Creation of custom CMake toolchain definitions

Using the target package, you can create custom CMake toolchain definitions for building code that
you generate from Simulink models. You can:

» Specify CMake parameters, for example, Generator and Toolchain file.

* Associate the toolchain with operating systems of your development computers.

* Associate the toolchain with your target hardware.

* Add the toolchain definition to an internal database. You can use the toolchain in subsequent
MATLAB sessions.

For more information, see “Create Custom CMake Toolchain Definition” and https://
www.mathworks.com/support/requirements/supported-compilers.html.

Toolchain setting Clang v3.1 | gmake (64-bit Mac) renamed

The Clang v3.1 | gmake (64-bit Mac) setting for the Toolchain configuration parameter is
renamed Xcode with Clang | gmake (64-bit Mac).

When you open a model created by using an earlier release, R2022b automatically updates the

Toolchain setting. If you export an R2022b model in the format of an earlier release, the Toolchain
setting reverts to the earlier release setting.

Target Language Complier search functions for regular expressions

Starting in R2022b, you can use these Target Language Compiler (TLC) functions to perform
operations on regular expressions. For more information, see “Regular Expressions”.

1-8

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

Deployment

TLC Built-In Functions

Built-In Function Name

Description

CONTAINS (exprl, expr2)

Returns TLC_ TRUE if exprl contains expr2, and TLC FALSE
otherwise. exprl and expr2 must be strings. For example,
CONTAINS(“I walk up, they walked up, we are walking
up.”, “walk(\\w*) up”) returns TLC TRUE.

REGEXP_MATCH(exprl, expr2)

Returns the substrings in exprl that match the pattern expr2. exprl
and expr2 must be strings. For example, REGEXP_MATCH(“I walk
up, they walked up, we are walking up.”, “walk(\\w*)
up”) returns [“walk up”, “walked up”, “walking up”].

REGEXPREP (exprl, expr2, expr3)

Returns a new string that replaces instances of the substring expr2 in
string exprl with the substring expr3. exprl, expr2 and expr3
must be strings. This function supports tokens in replacement string.
For example, REGEXPREP (“I walk up, they walked up, we

are walking up.”, “walk(\\w*) up”, “ascend$l”) returns
“I ascend, they ascended, we are ascending.”.

For more information, see “Target Language Compiler Directives” (Embedded Coder).

Automatic memory configuration for XCP-based external mode

simulations

In XCP-based external mode model simulations, the software determines and allocates the required
static memory. For models that stream a large amount of data to Simulink or run on low-memory
target devices, you do not have to determine and specify memory requirements manually.

If you specify an XCP-based protocol for the Transport layer configuration parameter, the
Configuration Parameters dialog box does not display the Static memory allocation check box.
Instead, the dialog box provides two new configuration parameters:

* Automatically allocate static memory (ExtModeAutomaticAllocSize) — The check box is
selected by default. The software automatically allocates the static memory required for the
buffers used in external mode communication. The size of memory required depends on the model
and the value of the Maximum duration parameter. If you clear the check box, you can use the
Static memory buffer size field to specify memory allocation.

* Maximum duration (ExtModeMaxTrigDuration) — Use this field to specify the maximum
value of ExtModeTrigDuration that the software must consider when it determines the
required static memory for external mode communication.

For more information, see:

* “Memory Allocation for Communication Buffers During XCP External Mode Simulation”

* “"Automatically allocate static memory”

¢ “Maximum duration”

XCP-based external mode simulations with generated C++ code

You can now run an XCP-based external mode simulation with these configuration parameter settings:

1-9

R2022b

* Language — C++
* Code interface packaging — C++ class

Previously, the simulation produced this error:

When external mode simulation is chosen, the generated code is not reusable.
Consider setting ‘Code interface packaging’ to ‘Nonreusable function’ on the
Configuration Parameters > Code Generation > Interface pane.

For more information, see “External Mode Simulation by Using XCP Communication”.

XCP external mode support for Simulink.ImageType

XCP-based external mode simulations now support the Simulink.ImageType data type. For more
information, see “External Mode Simulation by Using XCP Communication”.

1-10

Performance

Performance

SIMD code for bitwise and shift operations

In R2022b, you can generate SIMD code for bitwise operations and shift operations. When you select
an instruction set by using the Leverage target hardware instruction set extensions parameter, the
generated code includes the associated instructions for these bitwise operations and shift operations:

Bitwise AND
Bitwise OR
Bitwise XOR
Shift arithmetic

For more information, see Generate SIMD Code from Simulink Blocks.

1-11

https://www.mathworks.com/help/releases/R2022a/rtw/ref/selected-instruction-sets.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/generate-simd-code-from-simulink-blocks.html

R2022b

Check bug reports for issues and fixes

1-12

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2022a

Version: 9.7
New Features
Bug Fixes

Compatibility Considerations

R2022a

Model Architecture and Design

2-2

Specify tunable parameters for protected models

When you create a protected model, you can now specify which parameters recipients can tune
during simulation.

In the Create Protected Model dialog box, select the tunable parameters individually, or click Select
All. For more information, see Protect Models to Conceal Contents.

¥ Tunable parameters for simulation

Filter parameters by name or source
]
a] base workspace
b U] base workspace
g] base workspace
ka L] base workspace
kf L] base waorkspace
Ki L] base workspace
Kg] base workspace v

Select All Clear All

With the Simulink.ModelReference.protect function, specify tunable parameters with the new
TunableParameters name-value argument. By default, no parameters are tunable during
simulation.

To get the list of tunable parameters for a protected model, use the
Simulink.ProtectedModel.getTunableParameters function.

Redesigned Custom Code Pane of Model Configuration Parameters

The Custom Code pane of the Model Configuration Parameters dialog is changed for R2022a. The
parameters that pertain to custom code are now together in one section of the dialog, which is
organized into two tabs: Code information and Additional source code. Clicking on a tab shows
the parameters that are listed under that tab and hides the contents of the other tab.

https://www.mathworks.com/help/releases/R2022a/rtw/ug/create-a-protected-model-using-the-model-block-context-menu.html
https://www.mathworks.com/help/releases/R2022a/rtw/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2022a/rtw/ref/simulink.protectedmodel.gettunableparameters.html

Model Architecture and Design

Use the same custom code settings as Simulation Target

Custom code settings

Code information Additional source code

Include headers
Include directories
Source files
Libraries

Defines

Include headers:

Use the same custom code settings as Simulation Target

Custom code settings

Code information Additional source code

Initialize code
Terminate code
Additional code

Initialize code:

Some of the parameters have new names. The following table lists the parameters in the new Custom

Code pane dialog that have different names or are in different locations as a result of this change.

Parameter name prior to
R2022a

New name in R2022a

New location in R2022a

Insert custom C code in
generated > Header file

Include headers

Code information tab

Insert custom C code in
generated > Source file

Additional code

Additional source code tab

Insert custom C code in
generated > Initialize
function

Initialize code

Additional source code tab

Insert custom C code in
generated > Terminate
function

Terminate code

Additional source code

2-3

R2022a

2-4

Parameter name prior to
R2022a

New name in R2022a

New location in R2022a

Additional build information
> Source files

Source files

Code information tab

Additional build information
> Include directories

Include directories

Code information tab

Additional build information |Libraries Code information tab
> Libraries
Additional build information |[Defines Code information tab

> Defines

Functionality being removed or changed

Tunable parameters for simulation are independent of storage class

Behavior change

Starting in R2022a, when you protect a model with the Simulink.ModelReference.protect

function, you must specify the parameters of the protected model that you want to be tunable during
simulation by using the TunableParameters name-value argument. By default, no parameters are

tunable during simulation.

Previously, a parameter was tunable when its code generation storage class was set to a value other

than Auto. By default, the storage class for an individual data element is Auto.

https://www.mathworks.com/help/releases/R2022a/rtw/ref/simulink.modelreference.protect.html

Code Interface Configuration and Integration

Code Interface Configuration and Integration

Calibration file customization

Starting in R2022a, the code generator produces an ASAP?2 file that reflects these enhancements:

* Includes a default event list in the IF_DATA section.
* Excludes pointer variables.

* Aligns content of the Record layouts.a2l file with the version of the ASAP2 file.
You can further customize the ASAP2 file as follows:

* Exclude 64-bit integer elements from ASAP?2 file.
* Exclude structure elements from ASAP?2 file.
» Specify additional address information.

For more information, see Customize Generated ASAP2 File.

2-5

https://www.mathworks.com/help/releases/R2022a/rtw/ug/a2l-custom-cd.html

R2022a

Code Generation

2-6

ARM64 code for Apple platforms

On the Hardware Implementation pane, you can specify the device vendor and type Apple-ARM64,
which enables you to generate ARM64 code for Apple platforms. For more information, see:

* Device vendor

* Device type

* Hardware Implementation Pane

Scoped enum classes for C++11

In R2021b, during C++ code generation, the code generator produced or imported C-style enum
blocks in the generated code for exported or imported enumerations. If the DataScope property of
the enumeration is Exported, the code generator produced a C-style enum definition, such as:

typedef enum {
Red = 0,
Yellow,
Blue

} BasicColors;

or

typedef int8 T BasicColors;

#define Red ((BasicColors)0)
#define Yellow ((BasicColors)1l)
#define Blue ((BasicColors)?2)

The usage of these enumerations were as follows:

void mEnumInitModelClass::initialize()

{
rtU.Inl = Blue;

)

In R2022a, during C++11 code generation, the code generator produces or imports enumerations
only as scoped enum classes in the generated code. The enum definition also specifies the underlying
integer type. If the DataScope property of the enumeration is Exported, the code generator
produces this code:

enum class BasicColors : int8_T{
Red = 0

Yellow

=1,
Blue = 2

b
The use of these enumerations are qualified by the enum class name:
void mEnumInit::initialize()

rtU.Inl = BasicColors::Blue;

https://www.mathworks.com/help/releases/R2022a/simulink/gui/device-vendor.html
https://www.mathworks.com/help/releases/R2022a/simulink/gui/device-type.html
https://www.mathworks.com/help/releases/R2022a/simulink/gui/hardware-implementation-pane.html

Code Generation

)

When you set Language as C++ and Standard math library as C++11 (ISO), the code generator
produces scoped enum classes that reduce violations of AUTOSAR C++14 Rule A7-2-2 (Polyspace
Bug Finder) AUTOSAR C++14 Rule A7-2-3 (Polyspace Bug Finder). For more information, see Use
Enumerated Data in Generated Code.

Compatibility Considerations

If you import enumerations that contain C-style blocks (typedef enum syntax) and generate C++11
code, the generated code fails to compile. Update the imported enumeration definition in the header
file to be scoped enum classes (enum class syntax).

GRT-based system target files no longer support SimStruct
Errors

Starting in R2022a, in GRT-based system target files, you must set the TLC variable GenRTModel to
1. That variable setting instructs the code generator to use the real-time model data structure
rtModel instead of the simulation data structure SimStruct. The rtModel data structure
encapsulates model-specific information in a more compact form. If you set GenRTModel to 0, the
code generator returns an error. For more information, see Data Structures in the Generated Code.

Generate code for dinetwork workflows that use deep learning arrays

In R2022a, you can generate code for dlnetwork (Deep Learning Toolbox) and dlarray (Deep
Learning Toolbox) that you use to run inference with dlnetwork. The dlnetwork object code
generation supports the Intel® Math Kernel Library for Deep Neural Networks (MKL-DNN) library for
CPUs.

You can use MATLAB Function block or the Predict or Image Classifier block from the Deep Neural
Networks library to import the dlnetwork into Simulink.

2-7

https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea723.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/enumerations.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/enumerations.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/data-structures-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlnetwork.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/dlarray.html

R2022a

Deployment

2-8

Files modelsources.txt and defines.txt not generated

When you build your model, the modelsources.txt and defines. txt files are not generated.
Previously, the build process created the files in the build folder. For more information, see Manage
Build Process Folders and Manage Build Process Files.

Reduced bandwidth contiguous signal streaming by using XCP DAQ
packed mode

For XCP-based external mode simulations, the External Signal & Triggering dialog box has a Send
multiple contiguous samples in same packet check box. If you select the check box, the XCP
server uses the XCP DAQ packed mode for streaming signals from the target hardware to Simulink.
The mode improves the ratio of useful data to control data in streamed signals, sending data from
multiple time steps in each packet. For more information, see XCP External Signal & Triggering
Dialog Box.

Build process support for Unicode characters

Previously, if a build folder path contained Unicode® characters that did not belong to the system
locale, the build process might produce an error. In R2022a, a build process that uses a Microsoft
Visual C++ compiler produces compilation artifacts (including the nmake makefile) that are UTF-8
encoded. You can build code in a folder where the path contains Unicode characters that do not
belong to the system locale. For more information, see Build Process Support for Folder Names.

Microsoft Visual C++ 2022 toolchain support for Windows

On Windows, you can compile generated code by using the Microsoft Visual C++ 2022 product
family. For more information, see Supported Compilers.

https://www.mathworks.com/help/releases/R2022a/rtw/ug/build-process-folders.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/build-process-folders.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/build-process-files.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/graphical-controls-for-xcp-external-mode-simulations.html#mw_2a8d6902-f012-4814-aca2-b572c71ef61c
https://www.mathworks.com/help/releases/R2022a/rtw/ug/graphical-controls-for-xcp-external-mode-simulations.html#mw_2a8d6902-f012-4814-aca2-b572c71ef61c
https://www.mathworks.com/help/releases/R2022a/rtw/ug/enable-build-process-for-folder-names-with-spaces.html
https://www.mathworks.com/support/requirements/supported-compilers.html

Performance

Performance

SIMD code for reduction operations

In R2022a, you can generate SIMD code for reduction operations by using the new configuration
parameter Optimize reductions. The generated code uses the reduction operations from the
instruction set that you specify by using the Instruction set extensions parameter.

You can generate SIMD code for these blocks:

* Sum

* Product

* Minimum
* Maximum

Consider this model sumElements that has a Sum of Elements block and an input of size [1 42].

Co—) —CD

In R2021b, the sumElements step function contained this code:

tmp = -0.0;
i =0; 1 < 42; i++) {
tmp += sumElements U.Inl[i];

}
sumEl Y.Outl = tmp;

In R2022a, when you specify the Instruction set extensions SSE2 and select the parameter
Optimize reductions, the sumElements step function contains this code:

~.m128d tmp;
real T tmp 0O[2];
int32 T i;
tmp = mm_setl pd(0.0);
for (1 =0; 1 <=42; 1 +=2) {
tmp = mm_add pd(tmp, _mm_loadu pd(&sumElements U.Inl[i]));
}

_mm_storeu pd(&tmp 0[0], tmp);
sumElements Y.OQutl = tmp 0[0] + tmp O[1];

The function _mm_add pd processes two 64-bit values in parallel. This increase in number of bits that
process in parallel improves the execution speed of the code. For more information, see Generate
SIMD Code from Simulink Blocks and Generate SIMD Code for MATLAB Functions.

Improved performance of generated generic C/C++ code

In R2022a, the generated generic C/C++ code performance (that does not depend on third-party
libraries) for the following layers in your deep neural network has improved:

* bilstmLayer (Deep Learning Toolbox)

2-9

https://www.mathworks.com/help/releases/R2022a/rtw/ref/optimize-reduction-operations.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/generate-simd-code-from-simulink-blocks.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/generate-simd-code-from-simulink-blocks.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/generate-simd-code-for-matlab-blocks.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.bilstmlayer.html

R2022a

2-10

* convolution2dLayer (Deep Learning Toolbox)

+ fullyConnectedLayer (Deep Learning Toolbox)
* gruLayer (Deep Learning Toolbox)

* lstmLayer (Deep Learning Toolbox)

In addition, you can generate generic C/C++ code that uses SIMD intrinsics for these layers. Use of
SIMD intrinsics is likely to further improve the performance the generated code. To generate code
that uses SIMD intrinsics, do one of the following:

» Specify a code replacement library that supports SIMD, for example, GCC ARM Cortex-A. To
specify a code replacement library, set the code generation configuration parameter Code
replacement library.

» Specify SIMD instruction set for the target hardware by setting the code generation configuration
parameter Leverage target hardware instruction set extensions.

https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.convolution2dlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.fullyconnectedlayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.grulayer.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ref/nnet.cnn.layer.lstmlayer.html

Verification

Verification

MATLAB Coder Interface for Visual Studio Code Debugging

If you install the support package MATLAB Coder Interface for Visual Studio Code Debugging, you
can use Visual Studio Code as the graphical user interface for these debuggers:

* MinGW GDB on Windows
* GDB on Linux
 LLDB on macOS

For information about installing the support package, in MATLAB Central™ File Exchange, search for
MATLAB Coder Interface for Visual Studio Code Debugging.

For information about debugger support, see Debug Generated Code During SIL Simulation
(Embedded Coder).

2-11

https://www.mathworks.com/matlabcentral/fileexchange
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/debug-code-during-sil-simulations.html

R2022a

Check bug reports for issues and fixes

2-12

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2021b

Version: 9.6
New Features
Bug Fixes

Compatibility Considerations

R2021b

Model Architecture and Design

3-2

New ID for check "Check for relative execution order change for Data
Store Read and Data Store Write blocks"

Starting in R2021b, the ID for Model Advisor check Check for relative execution order change for
Data Store Read and Data Store Write blocks is changed to
mathworks.design.datastoresimrtwcmp. The previous ID was
com.mathworks.sorting.datastoresimrtwcmp.

Protection for models that use noninlined S-functions

Starting in R2021b, you can protect models that use noninlined S-functions. Previously, you could not
protect models that used noninlined S-functions directly or indirectly. For more information, see
Protect Models to Conceal Contents.

https://www.mathworks.com/help/releases/R2020b/rtw/ref/embedded-codersimulink-coder-checks.html#mw_5e375816-3096-451b-bd19-d1bc2fcce700
https://www.mathworks.com/help/releases/R2020b/rtw/ref/embedded-codersimulink-coder-checks.html#mw_5e375816-3096-451b-bd19-d1bc2fcce700
https://www.mathworks.com/help/releases/R2021b/rtw/ug/create-a-protected-model-using-the-model-block-context-menu.html

Code Interface Configuration and Integration

Code Interface Configuration and Integration

Changes to model hierarchy requirements

Starting in R2021b, the code generator allows a model reference hierarchy to have different
specifications for model configuration parameter Generate C API for: root-level 1/0.

For more information, see Set Configuration Parameters for Code Generation of Model Hierarchies.

Calibration file customization

Starting in R2021b, you can customize the ASAP2(a2l) file. The Code Mappings editor enables you
to customize the calibration properties of measurement and characteristic objects. For example, you
can set the properties Calibration Access and add a Display Identifier by using the Code
Mappings editor. For more information, see Configure Model Data Elements for ASAP2 File
Generation.

You can group the measurements and characteristic objects in the ASAP2(a2l) file based on the
properties of the data elements. For more information, see Customize Generated ASAP2 File.

Configure additional properties from the Code Mappings editor

Starting in R2021b, you can now configure additional code mapping properties from within the Code
Mappings editor. These properties were previously accessible only in the Property Inspector.

To configure the properties, click the Zlicon in the row containing the element you want to configure.

3-3

https://www.mathworks.com/help/releases/R2021b/rtw/ref/generate-c-api-for-root-level-io.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/set-configuration-parameters-for-code-generation-of-model-hierarchies.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/codemappingseditorc.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/a2l-cal-profile.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/a2l-cal-profile.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/a2l-custom-cd.html

R2021b

bi rtwdemo_configinterface * - Simulink prerelease use - O X
SIMULATION MODELING FORMAT = 2 (=
- e oy
ﬂ ("_’) @ D Code for %l Iﬁ u’g
Generic Quick C/C++ Code Settings Code rtwdemo_configinterface Generate Open Report |~ Venfy | Share
CCode = Start Advisor » - Interface + Code ~ - Code = <
QUTPUT | ASSISTANCE PREPARE GENERATE CODE RESULTS VERIFY | SHARE | &
rtwdemo_configinterface s}
@® n:wdemo_cnnﬁginterface h
~
-
N o
In1
Constant1
D LogOp Data Store Data Store
@ Write Memory
Constant2 RelOp2
1-D T(u)
o >—{T}—{=
in2 nm -
Code Mappings - C @
Data Defaults Inports Outports Parameters Data Stores. Signals/States
Filter contents
o Inl ImportedExtern /‘ i N
= In2 Model default: ImportedExternPointer Isenliﬁer
= In3 Model default: ImportedExternPointer
Measurement
= Ind Model default: ImportedExternPointer
Export
Ready 100% FixedStepDiscrete | BitMask l:l

CalibrationAccess NoCalibration ~

Open in Property Inspector

Displayldentifier

Format

View In Bus Element and Out Bus Element blocks in a hierarchy in the

Code Mappings editor

Beginning in R2021b, the Code Mappings editor displays data related to In Bus Element and Out Bus
Element blocks in a hierarchical view. In previous releases, this data displayed as a flat list in the

Code Mappings editor.

3-4

https://www.mathworks.com/help/releases/R2021b/simulink/slref/inbuselement.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/outbuselement.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/outbuselement.html

Code Generation

Code Generation

Code generation report enhanced with new functionalities

Starting in R2021b, the code generation report has been enhanced to include new functionalities. In
the new code generation report, you can:

* View your model hierarchy and quickly navigate to reports for other models in the hierarchy.

* For a model, search the generated code files simultaneously.

* Customize the code display by controlling comments, code folding, and code metrics information.

Code Generation Report

Find: |

\\

Content

Summary
Subsystem Report
Code Interface Report

Code

+ Model files
rtwdemo_mdIreftop.c
rtwdemo_mdlreftop.h
rtwdemo_mdIreftop_pri’
rtwdemo_mdlreftop_typ

~ Shared files
builtin_typeid_types.h
const_params.c
multiword_types.h
rtGetlnf.c
rtGetinf.h
rtGetNaN.c
rtGetNaN.h
rt_nonfinite.c
rt_nonfinite.h

rtwtypes.h
= Interface files

-

C:\work\rtwdemo_mdlreftop gri_rtwh\rtwdemc_mdlreftop.c Ln 28

— O X

|ﬁ} % Match Case

rtwdemo_mdireftop ¥

rtwdemo_mdireftop.c v Q) Search

e qu 7

Show comments and empty lines
#include "rtwdemo_mdlreftop.h” Code foldi

00e Tolgmng:
#include "rtwdemo_mdlreftop_private.h” g

[Fold all [Expand all]

/* Block states (default storage) */
Dk_rtwdemc_mdlreftop_T rtwdemo_mdlreftop D,
/* Real-time model */ [0 show code profiling
static RT_MODEL_rtwdemoc_mdlreftop_T rtwdemc_mdlreftop_M_;

RT_MoDEL_rtwdemo_mdlreftop_T *const riwdeme_mdlreficp M = &rtwdemo_mdlreftop M ;
static veld rate_scheduler(void);

* This function updates active task flag for each subrate.

* The function is called at model base rate, hence the

* penerated code self-manages all its subrates.

static veid rate_scheduler{void)
- i

/* Compute which subrates run during the next base time step. Subrates

* are an integer multiple of the base rate counter. Therefore, the subtask
* counter is reset when it reaches its limit (zero means run).
o

(rtwdemo_mdlreftop_M->Timing. TaskCounters.TID[1])++;
Col 33

For more information, see Reports for Code Generation.

In the code generation report, you can still generate a web view of your model and generate
additional report sections, such as the subsystem report. If you collect code coverage results for your
model, the code generation report does not include the coverage results. Instead, use the coverage
report generated by the coverage tool that you use to collect results.

https://www.mathworks.com/help/releases/R2021b/rtw/ug/reports-for-code-generation.html

R2021b

3-6

Accessibility of step entry-point functions generated for models
designed for multitasking and concurrency streamlined

Prior to R2021b, for models configured for multitasking (Treat each discrete rate as a separate
task is selected) or concurrency (Allow task to execute concurrently on target is selected), the
code generator placed a model step wrapper function, which served as a dispatcher, in generated
algorithmic code files model . c or model.cpp and model . h. The wrapper function uses a switch
statement to select the model stepN function to call during run time. For multitasking models, you
could suppress generation of the wrapper function by setting the TLC variable RateBasedStepFcn
to 1.

Starting in R2021b, by default, the code generator streamlines accessibility and improves
performance of step entry-point functions generated for models designed for multitasking and
concurrent execution. The code generator produces a step entry-point function for each rate. The
Code Interface Report lists the individual functions. A main program can call each of the entry-point
functions directly. This change does not apply to models configured to use the classic call interface.

For existing application code that depends on the wrapper function, the code generator places the
wrapper function in these generated files:

» For models configured for multitasking - rtmodel. c or rtmodel. cpp and rtmodel.h

» For models configured for concurrent execution - rt_main.c or rt_main.cpp

For more information, see Manage Build Process Files and Analyze the Generated Code Interface.

Compatibility Considerations

In a future release, the code generator will stop generating the wrapper function. Update application
code to call the rate-specific entry-point functions directly. If your application code uses the wrapper
function, at least temporarily:

» For models configured for multitasking, you can update the #include statement to specify
rtmodel. h instead of model. h.

* For models configured for concurrent execution, you can copy the wrapper function from the
generated example main program rt main.c or rt_main.cpp and paste it into your application
main program.

Target hardware data management

The target package provides these enhancements for target hardware data management:

* NumberOfCores, NumberOfThreadsPerCore, and NumberOfLogicalCores properties for
target.Processor objects, which you can use to describe multicore processor architectures.
For more information, see target.Processor.

* NonStandardDataTypes property for target.DataTypes objects, which you can use to capture
nonstandard data type implementations. For more information, see
target.LanguageImplementation.

https://www.mathworks.com/help/releases/R2021b/rtw/ug/build-process-files.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/target.processor-class.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/target.languageimplementation-class.html

Code Generation

File size reduction by using memset function for zero initialization
Starting in R2021b, the code generator uses the memset function to initialize bus objects and
enumerations to zero when you select the model configuration parameter Use memset to initialize
floats and doubles to 0.0.

Consider this model. The Bus Assignment block receives several inputs, which initialize to zero.

a ¥ Bus

(1} » =E Bus 1

-

In R20214a, the code generator initialized the bus object by using a ground constant, even if you
selected the Use memset to initialize floats and doubles to 0.0 parameter.

const BusObject2 test modell rtZBusObject2 = {

{
{
0.0, /* a */
FPL MAG VAR SOURCE LOCAL, /* b */
0.0 /* ¢ */
oA
0.0, /* a */
FPL MAG VAR SOURCE LOCAL, /* b */
0.0 /* ¢ */
oA
0.0, /* a */
FPL MAG VAR SOURCE LOCAL, /* b */
0.0 /* ¢ */
}
}

}

/* Model step function */
void test modell step(void)

BusObject2 rtb BusAssignment;

/* BusAssignment: '<Root>/Bus Assignment' incorporates:
* Constant: '<Root>/Constant'

* TInport: '<Root>/bl'

* TInport: '<Root>/cl'

*/

rtb BusAssignment = test modell rtZBusObject2;

R2021b

test modell U.bl;
test modell U.cl;

rtb BusAssignment.bl
rtb BusAssignment.cl

/* Outport: '<Root>/Outport' */
test modell Y.Outport = rtb BusAssignment;

}
In R2021b, the code generator initializes the bus object by using the memset function:

/* Model step function */
void mGndCnstWithEnum step(void)

BusObject2 rtb BusAssignment;

/* BusAssignment: '<Root>/Bus Assignment' incorporates:
* Inport: '<Root>/bl'

* Inport: '<Root>/cl'

*/

memset (&rtb _BusAssignment, 0, sizeof(BusObject2));

rtb BusAssignment.bl = mGndCnstWithEnum U.b1l;

rtb BusAssignment.cl = mGndCnstWithEnum U.c1;

/* Outport: '<Root>/Outport' */
mGndCnstWithEnum Y.Outport = rtb BusAssignment;

}

This change reduces the size of the generated source file. For more information, see Optimize
Generated Code Using memset Function.

Data reference of model parameter in model.rtw

In R2021a, by default, if you did not specify a value for the model configuration parameter
RTWDataReferencesMinSize, the code generator assigned the default value 10 to the parameter.

In R2021b, by default, if you do not specify a value for the model configuration parameter
RTWDataReferencesMinSize, the code generator assigns the value -1 to the parameter. In this
case, the code generator writes a data reference of a model parameter to the model . rtw file in place
of a data vector. This optimization reduces the file read/write operations, which improves the code
generation time. When you specify a positive value for the RTWDataReferencesMinSize parameter,
the code generator uses the value as the threshold size based on which it writes data references to
the model. rtw file in place of a data vector.

For example, consider this model:

3-8

In R20214, if you did not specify any value for the RTWDataReferencesMinSize parameter, the
code generator wrote the data vector to the model . rtw file:

Parameter {
Identifier "Gain_Gain"

https://www.mathworks.com/help/releases/R2021b/rtw/ug/optimize-generated-code-by-using-memset-function.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/optimize-generated-code-by-using-memset-function.html

Code Generation

LogicalSrc PO

Protected no

Value [1.0, 2.0, 3.0, 4.0, 5.0]
CGTypeldx 19

ContainerCGTypeldx 18

In R2021D, if you did not specify any value for the RTWDataReferencesMinSize parameter, the
code generator writes the data reference of the parameter to the model . rtw file:

Parameter {

Identifier "Gain_Gain"
LogicalSrc PO
Protected no

Value SLData(0)
CGTypeldx 20
ContainerCGTypeldx 19

For more information, see Data References in the model . rtw File.

Model parameter value in TLC

In R20214a, you could access the data vector of the model parameter written to the
ModelParameters record in the model . rtw by fetching the Value record in your TLC script. For
example, you used:

%assign numRowValues = SIZE(RowIndex.Value, 1)

In R2021b, you can access the data vector of the model parameter by using the new TLC function
LibGetParameterValue. The LibGetParameterValue function is in the paramlib. t1c file. For
example, you can use:

%assign numRowValues = SIZE(LibGetParameterValue(RowIndex), 1)

For more information, see LibGetParameterValue.

Language standard parameter for configuring C/C++ language
standard

Previously, you configured the C/C++ language standard by using the Standard math library
parameter located on the Interface pane in the Configuration Parameters dialog box. You can now
use the Language standard parameter located on the Code Generation pane. For more
information, see Language standard.

3-9

https://www.mathworks.com/help/releases/R2021b/rtw/tlc/data-references-in-the-model-rtw-file.html
https://www.mathworks.com/help/releases/R2021b/rtw/tlc/parameter-functions.html#mw_3dd72a28-df20-4cb6-b836-1ac137db26ed
https://www.mathworks.com/help/releases/R2021b/rtw/ref/standard-math-library.html

R2021b

Deployment

3-10

CMake ships with MATLAB

The executable file for CMake, a third-party, open-source tool for build process management, is
included as part of MATLAB. After generating code from a model, you can use codebuild to create
CMake configuration (CMakeLists. txt) files, and then invoke CMake to build the generated code.
For more information, see Approaches for Building Code Generated from Simulink Models and
Compile Code in Another Development Environment.

XCP external mode simulation through concurrent execution

On Windows and Linux computers, you can run external mode simulations that generate, build, and
concurrently execute model code for the native threads example.

For more information, see Build on Desktop and XCP External Mode Limitations.

Simplified creation of XCP target connectivity objects

Previously, multiple target.create function calls were necessary to create the target connectivity
objects required for XCP-based external mode simulation. In R2021b, you can create the objects
through a single call to target. create. For more information, see:

* Step 6 in Customise Connectivity for XCP External Mode Simulations

+ target.XCPPlatformAbstraction

* target.XCP

+ target.XCPExternalModeConnectivity

* target.ExternalMode

Parameter upload for external mode simulations

If you set DefaultParameterBehavior to 'Inlined’, the code generator embeds numeric model
parameter values instead of symbolic parameter names in the generated code. You can use
Simulink.Parameter objects to remove parameters from inlining and declare the parameters
tunable. Previously, for XCP external mode simulations, when you connected Simulink to the target
application, Simulink did not upload the numeric values of the tunable parameters from the target
application. In R2021b, Simulink uploads the parameter values to the model.

For XCP, TCP/IP, and serial external mode simulations, previously, Simulink did not upload workspace
parameter values that had enumerated data types. In R2021b, Simulink uploads the parameter
values.

For more information, see:

* Create Tunable Calibration Parameter in the Generated Code
* Automatic Parameter Uploading on Host/Target Connection

* XCP External Mode Limitations

» TCP/IP and Serial External Mode Limitations

https://www.mathworks.com/help/releases/R2021b/rtw/ref/codebuild.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/approaches-for-building-generated-code.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/compile-code-in-another-development-environment.html
https://www.mathworks.com/help/releases/R2021b/simulink/ug/building-and-downloading-the-model-to-a-multicore-target.html#bs6x65g
https://www.mathworks.com/help/releases/R2021b/rtw/ug/external-mode-simulation-with-xcp-communication.html#mw_562fab5d-0c62-4f20-bfc7-251542f1deb1
https://www.mathworks.com/help/releases/R2021b/rtw/ug/set-up-connectivity-between-simulink-and-target-hardware.html#mw_70b11b79-1a7b-4ac9-bd6d-a21f704fdae5
https://www.mathworks.com/help/releases/R2021b/rtw/ref/target.xcpplatformabstraction-class.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/target.xcp-class.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/target.xcpexternalmodeconnectivity-class.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/target.externalmode-class.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/use-parameter-objects-for-code-generation.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/external-mode-simulation-with-tcpip-or-serial-communication.html#f1022228
https://www.mathworks.com/help/releases/R2021b/rtw/ug/external-mode-simulation-with-xcp-communication.html#mw_562fab5d-0c62-4f20-bfc7-251542f1deb1
https://www.mathworks.com/help/releases/R2021b/rtw/ug/external-mode-simulation-with-tcpip-or-serial-communication.html#bqo0__w-1

Deployment

Hold Updates button for Run on Custom Hardware app

In the Run on Custom Hardware app for external mode simulations, the Hold Updates toggle button

oog
o} replaces the Batch Mode button 55, If you toggle on the Hold Updates button, you can defer
the update of block parameters until you toggle off the button or click the Update All Parameters
button.

For more information, see External Mode Simulation by Using XCP Communication and External
Mode Simulation with TCP/IP or Serial Communication.

removeSourceFiles function for RTW.Buildinfo object
The RTW.BuildInfo class provides the removeSourceFiles function for the removal of source

files from a build information object. For more information, see Remove Source File Names from
Build Information.

3-11

https://www.mathworks.com/help/releases/R2021b/rtw/ug/external-mode-simulation-with-xcp-communication.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/external-mode-simulation-with-tcpip-or-serial-communication.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/external-mode-simulation-with-tcpip-or-serial-communication.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/rtw.buildinfo.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/removesourcefiles.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/removesourcefiles.html#mw_e028d397-d098-46ee-a75e-8deb14d2fd33
https://www.mathworks.com/help/releases/R2021b/rtw/ref/removesourcefiles.html#mw_e028d397-d098-46ee-a75e-8deb14d2fd33

R2021b

Performance

3-12

Generation of SIMD code for Intel hardware

In R2021b, you can generate single instruction, multiple data (SIMD) code from Simulink models by
using Intel SSE technology.

For new models that use the supported target hardware, the parameter is set to SSE2 by default. The
generated code uses SIMD intrinsics. For computationally intensive operations on supported blocks,
SIMD intrinsics can significantly improve the performance of the generated code on Intel platforms.

To generate code that uses SIMD intrinsics, set the new configuration parameter Leverage target
hardware instruction set extensions to SSE2. If you have Embedded Coder, you can generate code
that uses additional SIMD instruction sets. For more information, see Generate SIMD Code from
Simulink Blocks.

Optimized code for models containing multiple Interpolation Using
Prelookup blocks

Starting in R2021b, the code generator eliminates redundant data copies from the code generated for
models containing multiple Interpolation Using Prelookup blocks when these conditions are true:
* The inputs of the Interpolation Using Prelookup blocks are from the same sources.

* The Interpolation Using Prelookup blocks have identical block parameter settings except they
have different Table data values specified, on the Main tab, in the Value text box.

* The data type of the specified table data matches the Table data type specified on the Data
Types tab.

* The blocks are of the same variant and have the same sample times.

* No lookup table object is used in the blocks.

* The output signals of the blocks are not branched, logged, or resolved to signal objects.

* The model configuration parameter Use memcpy for vector assignment is selected, and the
table size (in bytes) exceeds the specified Memcpy threshold (bytes).

Eliminating the redundant data copies reduces RAM and ROM consumption and improves execution
speed.

Consider the model mCommonSrceInterp.

https://www.mathworks.com/help/releases/R2021b/rtw/ref/selected-instruction-sets.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/selected-instruction-sets.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/generate-simd-code-from-simulink-blocks.html
https://www.mathworks.com/help/releases/R2021b/rtw/ug/generate-simd-code-from-simulink-blocks.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/interpolationusingprelookup.html

Performance

CO—

Input3

1 2D Tk

J o

>z
Interpolation

1 2D Tk

>z
Interpolation2

1 2D Tk

1 %2

Interpalation3

MultipartSwitch

The model contains three Interpolation Using Prelookup blocks that take inputs from the
Prelookupl and Prelookup?2 blocks. The outputs of the Interpolation Using Prelookup blocks
connect to a Multiport Switch block. This model satisfies the preceding the conditions.

In R20214a, the code generator produced this code:

/* Model step function */
void mCommonSrcInterp step(void)

{

real T frac[2];

real T rtb Prelookupl 02;
real T rtb Prelookup2 02;
uint32_ T bpIndex[2];
uint32 T rtb_Prelookupl ol;
uint32 T rtb_Prelookup2 ol;

/* PreLookup: '<Root>/Prelookupl' incorporates:
* Inport: '<Root>/Inputl’
*/
rtb_Prelookupl ol = plook binx(mCommonSrcInterp U.Inputl,
mCommonSrcInterp ConstP.Prelookupl BreakpointsData, 1U,
switch ((int32_T)mCommonSrcInterp U.Input3) {
case 0:
/* Interpolation n-D: '<Root>/Interpolationl' */
frac[0] = rtb Prelookupl o02;
frac[l] = rtb _Prelookup2 o02;
bpIndex[0] rtb_Prelookupl ol;
bpIndex[1] rtb_Prelookup2 ol;

mCommonSrcInterp Y.Output8 = intrp2d 1 pw(bpIndex, frac,

mCommonSrcInterp ConstP.Interpolationl Table, 2U);
break;

&rtb_Prelookupl 02);

The code contained temporary variables rtb Prelookupl 02, rtb Prelookup2 o2,
rtb Prelookupl ol, and rtb Prelookup2 o1l to hold the outputs of the Prelookupl and

3-13

R2021b

Prelookup2 blocks that passed to the individual Interpolation Using Prelookup blocks as inputs
through assignment operations.

In R2021b, the code generator produces this code:

/* Model step function */
void mCommonSrcInterp step(void)
{
real T frac[2];
const real T *rtb MultiportSwitch TableData 0;
uint32 T bpIndex[2];
/* Interpolation n-D: '<Root>/Interpolation3' incorporates:

*/
bpIndex[0] = plook binx(mCommonSrcInterp U.Inputl,

mCommonSrcInterp ConstP.Prelookupl BreakpointsData, 1U, &frac[0]);
bpIndex[1] = plook binx(mCommonSrcInterp U.Input2,

mCommonSrcInterp ConstP.Prelookup2 BreakpointsData, 20U, &frac[l]);

switch ((int32 T)mCommonSrcInterp U.Input3) {
case 0:
rtb MultiportSwitch TableData 0 =
&mCommonSrcInterp ConstP.Interpolationl Value[0];
break;

mCommonSrcInterp_Y.Output8 = intrp2d_1 pw(bpIndex, frac,
rtb_MultiportSwitch_TableData 0, 2U);

The code generator does not generate the temporary variables rtb Prelookupl 02,

rtb Prelookup2 o2, rtb Prelookupl ol, and rtb Prelookup2 o1l to hold the outputs of the
Prelookupl and Prelookup?2 blocks. The code generator eliminates the unnecessary assignment
operations that took place previously to pass the outputs to individual Interpolation Using Prelookup
blocks. Now, the outputs of Prelookupl and Prelookup2 blocks pass as function arguments in the
highlighted code line.

3-14

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

3-15

https://www.mathworks.com/support/bugreports/

R2021a

Version: 9.5
New Features
Bug Fixes

Compatibility Considerations

R2021a

Model Architecture and Design

4-2

Code reuse across models for S-function inside library subsystems

In R2020b, you could place S-functions inside a reusable subsystem within a model. For S-functions
that met certain requirements, you specified the SS OPTION WORKS WITH CODE_REUSE flag in the
ssSetOptions function. This flag indicated that your S-function met the requirements for subsystem
code reuse.

In R20214a, you can place S-functions inside a reusable library subsystem and reuse the subsystem
within a model and across the model reference hierarchy. The code generator produces the code for
the S-functions in the slprj\ert\ sharedutils folder.

To reuse S-functions within a model, set the SS OPTION _WORKS WITH CODE_REUSE flag in the
ssSetOptions function.

To reuse S-functions across models, in the ssSetOptions function, set these flags in the S-function
file:

* Inthe ssSetOptions function, set the SS OPTION WORKS WITH CODE_REUSE flag.
* Set ssSetSupportedForCodeReuseAcrossModels to 1 or true

For example:

static void mdlInitializeSizes(SimStruct *S)

{
ssSetOptions(S,
SS_OPTION_WORKS_WITH_CODE_REUSE |
SS OPTION EXCEPTION FREE CODE |
SS OPTION DISALLOW CONSTANT SAMPLE TIME);
ssSetSupportedForCodeReuseAcrossModels(S, 1);
}

If you use the legacy code function to configure your S-function for code reuse, use the new S-
function option supportCodeReuseAcrossModels.

If your S-function uses custom functions defined in your external header files, add the
LibAddtoSystemCustomIncludes(system, incFileName) function in the .t1lc file of your S-
function.

For more information, see S-Functions for Code Reuse.

Parameter name updated to copy code mappings

In the Model Reference Conversion Advisor, the name of the Copy code mapping information to
the new converted model option is now Copy code mappings. For more information, see Convert
Subsystem to Referenced Model and Generate Code.

https://www.mathworks.com/help/releases/R2021a/simulink/sfg/ss_option_works_with_code_reuse.html
https://www.mathworks.com/help/releases/R2021a/simulink/sfg/sssetoptions.html
https://www.mathworks.com/help/releases/R2021a/simulink/sfg/sssetsupportedforcodereuseacrossmodels.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/legacy_code.html
https://www.mathworks.com/help/releases/R2021a/rtw/tlc/other-useful-functions.html#mw_cd55db9b-6f94-4bbd-bb00-7485802a4041
https://www.mathworks.com/help/releases/R2021a/rtw/ug/s-functions-for-code-reuse.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/convert-subsystem-to-referenced-model-and-generate-code.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/convert-subsystem-to-referenced-model-and-generate-code.html

Code Interface Configuration and Integration

Code Interface Configuration and Integration

Invalid values detection after changing enum definitions in custom
system target file

Previously, changing an enum definition in a custom system target file sometimes caused models to
have invalid settings and revert to the default values for those settings. A model had an invalid
setting if you:

* Saved a model with a specific value for the enum in your custom system target file.

* Edited your custom system target file by changing or removing the value from the enum definition.

* Loaded the model using the new version of the system target file.

In R20201a, when you change an enum definition in a custom system target file and load a model, a
warning indicates if the model used a value that is no longer valid for the enum. The enhanced
warning shows the invalid value and the corrected value. To enable the enhanced warning, when you
change an enum definition, change the property rtwgensettings.Version to a different value. For
example, change rtwgensettings.Version from '1' to '1.1"'. For more information about
custom TLC files, see Target Language Compiler Basics.

Calibration file generation

Starting in R2021a, you can generate multiple versions (including latest version 1.7) of an A2L file
according to the ASAM ASAP2 standard. The new tool enables you to customize the A2L file. For
example you can include or exclude comments, include the name of the A2L file, and include the
location where to save the A2L file.

Using the Generate Calibration Files tool, you can generate a CDFX file according to the ASAM
CDF (Calibration Data Format) standard that contains the description of tunable model parameters
values and the associated metadata.

For more information, see Generate ASAP2 and CDF Calibration Files.

Code configuration for data dictionary defaults
Using the CoderDictionary object, you can now query and set the code settings of dictionary

defaults in an Embedded Coder dictionary within a Simulink data dictionary. For more information,
see coder.mapping.api.CoderDictionary.

ASAP2 system target file being removed

Warns

Support for the asap2.tlc system target file will be removed in a future release. Starting in R2021a,
use the Generate Calibration Files tool to generate ASAP2 files. For more information, see
Generate ASAP2 and CDF Calibration Files.

Functionality being removed or changed

4-3

https://www.mathworks.com/help/releases/R2021a/rtw/tlc/what-is-the-target-language-compiler.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/asap2-cdf-calibration.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/coder.mapping.api.coderdictionary.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/asap2-cdf-calibration.html

R2021a

4-4

You can no longer use the ASAP2 interface configuration parameter to generate code for the ASAP2
data interface. Use the Generate Calibration Files tool to generate ASAP2 related code and ASAP2
file.

Code Generation

Code Generation

simstruc_types.h not generated in rtwtypes.h

In R2020b, for non-ERT system target files, the code generator included the simstruc_types.h file
in the generated rtwtypes.h file.

In R2021a, for non-ERT system target files, the code generator does not include the
simstruc_types.h file in the generated rtwtypes.h file.

For more information, see Manage Build Process File Dependencies.

Target hardware data management

R2021a provides these target package enhancements for target hardware data management.

Function Enhancement

target. remove If you specify the name-value argument, ' IncludeAssociations', true,
the function removes the specified target object and associated objects from
an internal database. The function does not remove an associated object if it
is referenced by other target objects. The function displays information about
the removed objects, which you can suppress by using the name-value
argument, 'SuppressOutput', true. For more information, see

target. remove.

target.add The function displays information about the objects that it adds to an internal
database. The function also returns a vector that contains the added objects.
You can suppress the text output by using the name-value argument,
'SuppressOutput', true. For more information, see target.add.

target.export When you run the function generated by target.export, it returns the
registered target object and associated target objects. Previously, the
function did not return associated target objects. For more information, see
target.export.

target.create Using name-value arguments, you can create an object and specify
properties in a single step for these classes:

* target.Timer
* target.Command
* target.TargetConnection

Previously, multiple steps were required.

Functionality being removed or changed

Compatibility Considerations

rtwreport function will be removed
Warns

https://www.mathworks.com/help/releases/R2021a/rtw/ug/build-process-file-dependencies.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.remove.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.add.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.export.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.timer-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.command-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.targetconnection-class.html

R2021a

4-6

The function rtwreport will be removed in a future release. Use coder.report.generate
instead.

To update your code, change instances of the function name rtwreport to
coder.report.generate. You do not need to change the input arguments.

Unlike the rtwreport function, the coder. report.generate function provides additional input
options that you can use to configure the generated report. However, the coder. report.generate
function does not include snapshots of the model or the block execution order list.

RTW.HWDeviceRegistry is not supported
Errors

Simulink Coder no longer supports the RTW.HWDeviceRegistry class. If you use the
RTW.HWDeviceRegistry class in rtwTargetInfo.mand sl customization.m files to register
hardware devices, the software produces an error. To upgrade existing definitions of hardware
devices, you can use the target.upgrade function. For more information, see Upgrade Data
Definitions for Hardware Devices.

https://www.mathworks.com/help/releases/R2021a/rtw/ref/coder.report.generate.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.upgrade.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/register-new-hardware-devices.html#mw_62dabfd5-5891-4eae-8c68-e5c6b8ddcc60
https://www.mathworks.com/help/releases/R2021a/rtw/ug/register-new-hardware-devices.html#mw_62dabfd5-5891-4eae-8c68-e5c6b8ddcc60

Deployment

Deployment

Target connectivity customization for external mode simulations

Using the target package, you can customize target connectivity for external mode simulations.
MATLAB registration of the customized target connectivity is simple. You can customize the XCP
transport layer, the XCP platform abstraction layer, and tools for automatic deployment. You can

reuse the hardware board definition for processor-in-the-loop (PIL) simulations.

R2021a provides these new classes:

* target.ExternalMode

* target.ExternalModeConnectivity

* target.XCP

+ target.XCPExternalModeConnectivity
+ target.XCPPlatformAbstraction

* target.XCPSerialTransport

* target.XCPTCPIPTransport

* target.XCPTransport

For more information, see Set Up Connectivity Between Simulink and Target Hardware.

XCP external mode simulation on big endian target hardware

You can run XCP-based external mode simulations on target hardware that uses a big endian
architecture. For more information, see External Mode Simulation by Using XCP Communication.

Build commands slbuild and rtwbuild unified

R2021a unifies the slbuild and rtwbuild commands. Use slbuild to:

* Build models and subsystems.
* Build multiple subsystems by specifying subsystem names in a cell array.

The rtwbuild command is now an alias for slbuild.

Compiler default language standards to compile code

Previously, when you used a Linux GCC compiler, the software added compiler flags to enforce the
specified language standard in the parameter Standard math library on the compilation process.
This enforcement restricted building custom code that did not conform with the version of the
language standard. For instance, if you set this parameter to C++03, while building the generated
code that integrated custom code with C++11 features, you got a compilation error.

In R2021a, when you use a Linux GCC compiler, the software does not enforce the language standard
specified in the parameter Standard math library on the compilation process. Instead, during
compilation, it uses the compiler default language standard. Depending on the version of the GCC
compiler, now you can build the generated code that integrates custom code or libraries that uses

https://www.mathworks.com/help/releases/R2021a/rtw/ref/target-package.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.externalmode-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.externalmodeconnectivity-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.xcp-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.xcpexternalmodeconnectivity-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.xcpplatformabstraction-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.xcpserialtransport-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.xcptcpiptransport-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/target.xcptransport-class.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/set-up-connectivity-between-simulink-and-target-hardware.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/external-mode-simulation-with-xcp-communication.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/slbuild.html

R2021a

higher language standard features compared to the language standard specified in the parameter.
For more information, see Standard math library.

packNGo for CMake configuration files

In R20214a, you can use the packNGo function to package CMake configuration files
(CMakeLists.txt) that are generated by the codebuild function. When you run the function, you
must specify the name-value argument 'packType', 'hierarchical'. For example:

packNGo (buildFolder,
'packType', 'hierarchical',
'nestedZipFiles', false);

After unpacking the ZIP file in another development environment, you can use CMake to:

* Generate makefiles or projects.
* Build binary files.

For more information, see Compile Code in Another Development Environment.

Functionality being removed or changed

Rapid simulation (RSim) system target file will be removed
Still runs

The rapid simulation (RSim) system target file (rsim.tlc) will be removed in a future release. The
RSim system target file provides capabilities for characterizing model behavior as described in
Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target
File. Instead of using the RSim system target file:

* To speed up simulations, use the Simulink Accelerator simulation mode. Accelerator simulation
mode provides the same functionality as the RSim system target file, but is easier to use. See
Design Your Model for Effective Acceleration.

» To deploy standalone simulations outside of the MATLAB and Simulink environment, use the
Simulink Compiler™. The Simulink Compiler provides a turnkey solution for building and sharing
simulations as standalone executables that package a compiled Simulink model with MATLAB
code that sets up, runs, and analyzes model simulations. See Comparing Simulink Coder and
Simulink Compiler (Simulink Compiler).

Use of Scope Viewers and Floating Scope blocks in referenced models during XCP external
mode simulations
Errors

You cannot use Scope Viewers and Floating Scope blocks to monitor signals in referenced models
during XCP-based external mode simulations. To monitor referenced model signals, enable signal
logging and use the Simulation Data Inspector. For more information, see External Mode Simulation
by Using XCP Communication.

4-8

https://www.mathworks.com/help/releases/R2021a/rtw/ref/standard-math-library.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/packngo.html
https://www.mathworks.com/help/releases/R2021a/rtw/ref/codebuild.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/compile-code-in-another-development-environment.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/rapid-simulations.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/rapid-simulations.html
https://www.mathworks.com/help/releases/R2021a/simulink/ug/designing-your-model-for-effective-acceleration.html
https://www.mathworks.com/help/releases/R2021a/slcompiler/ug/comparison-of-workflows-between-simulink-coder-and-simulink-compiler.html
https://www.mathworks.com/help/releases/R2021a/slcompiler/ug/comparison-of-workflows-between-simulink-coder-and-simulink-compiler.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/external-mode-simulation-with-xcp-communication.html
https://www.mathworks.com/help/releases/R2021a/rtw/ug/external-mode-simulation-with-xcp-communication.html

Performance

Performance

Reduced zero initialization code

In R2020b, when you defined large and complex structures that needed to be initialized to zero, the
code generator initialized a rtz* global variable that had zero values. This variable increased the
memory footprint of the generated code and code generation time. For example:

const Y testModel_rtzy = {

{
{
0.0, /* a */
0.0 /* ¢ */
oA
0.0, /* a */
0.0 /* ¢ */
oA
0.0, /* a */
0.0 /* ¢ */
}
' /* A */
0.0, /* B */
0.0 /* C */
} s

/* Model step function */
void testModel step(void)

{
Y rtb BusAssignment;

/* BusAssignment: '<Root>/Bus Assignment' incorporates:
* Constant: '<Root>/Constant'’
* Inport: '<Root>/bl'
* Inport: '<Root>/cl'
*/
rtb BusAssignment = testModel rtzy;
rtb BusAssignment.B = testModel U.bl;
rtb BusAssignment.C = testModel U.cl;

/* Outport: '<Root>/Outport' */
testModel Y.Outport = rtb BusAssignment;
}

In R2021a, when you define complex data structures that need to be initialized to zero, the code
generator uses the memset function to initialize a variable that has zero values in the model step
function. The code generator does not use the memset function when you define types that do not
have a representation for a zero value, for example, int16, a fixed-point data type that has slope and
bias configured by using nonzero values.

/* Model step function */
void testModel step(void)

Y rtb BusAssignment;

/* BusAssignment: '<Root>/Bus Assignment' incorporates:

4-9

R2021a

* TInport: '<Root>/bl'

* TInport: '<Root>/cl'

*/

(void)memset (&rtb_BusAssignment, 0, sizeof(Y));
rtb BusAssignment.B = testModel U.bl;

rtb BusAssignment.C = testModel U.cl;

/* Outport: '<Root>/Outport' */
testModel Y.Outport = rtb BusAssignment;

}

For more information, see Optimize Generated Code Using memset Function.

4-10

https://www.mathworks.com/help/releases/R2021a/rtw/ug/optimize-generated-code-by-using-memset-function.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

4-11

https://www.mathworks.com/support/bugreports/

R2020b

Version: 9.4
New Features
Bug Fixes

Compatibility Considerations

R2020b

Model Architecture and Design

5-2

Automatically package protected models with their dependencies

When you create a protected model, you can now automatically package it with its dependencies and
a harness model in a project archive. When the recipient extracts the contents of the project archive
and opens the harness model, they should be able to simulate the protected model without needing to
define missing variables or objects. Before sharing the project archive, check whether the project
contains all of the necessary supporting files, and update the harness model as needed.

In the Create Protected Model dialog box, set Contents to Protected model (.slxp) and
dependencies in a project. For Name of project archive (.mlproj), use the default name or
specify a name. The project inside the project archive uses the same name.

Alternatively, use the Simulink.ModelReference.protect function with the comma-separated
pair consisting of 'Project' and true. To specify a project name, also use the comma-separated
pair consisting of 'ProjectName' and the desired name specified as a character vector. If you do not
specify a project name, the function uses the default name.

For more information, see Package and Share Protected Models.

Execution order check for Data Store Memory blocks

Use the Model Advisor check Check for relative execution order change for Data Store Read and Data
Store Write blocks (check ID com.mathworks.sorting.datastoresimrtwcmp) to verify that the
execution order of the Data Store Read and Data Store Write blocks in normal (simulation) mode does
not change when the model is compiled for code generation.

When there are differences in the execution order, the check issues a Warning and identifies the
discrepancies in the results. You can correct the issue by clicking the Model Advisor action button
Modify block priorities. The Model Advisor updates the blocks so that the execution order in the

https://www.mathworks.com/help/releases/R2020b/rtw/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/protected-model-included-files.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/embedded-codersimulink-coder-checks.html#mw_5e375816-3096-451b-bd19-d1bc2fcce700
https://www.mathworks.com/help/releases/R2020b/rtw/ref/embedded-codersimulink-coder-checks.html#mw_5e375816-3096-451b-bd19-d1bc2fcce700
https://www.mathworks.com/help/releases/R2020b/simulink/slref/datastoreread.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/datastorewrite.html

Model Architecture and Design

normal (simulation) mode matches the order in the code generation mode.

@) Model Advisor - mDSMS_Scopes e =3

File Edit Run Settings Highlighting Help
P &% = Find: | v|<a

~ Model Advisor
~ [@ Ca By Product
» [& Embedded Coder
» [[] & Ssimulink
~ (@] C& Simulink Coder
(=] Identify blocks using one-based indexing
[Z] Check solver for code generation
[Z] Check for blocks not supported by code generation
[Z] Check for model reference configuration mismatch
[Z] Check code generation identifier formats used for model reference
] ~Check reuse of subsystem code
[] ~Check sample times and tasking mode
[Z] ~Check for blocks that have constraints on tunable parameters
» & Simulink Code Inspector
» [AUTOSAR Blockset
» [| & DO Qualification Kit
4 [= HDL Coder
» [] & IEC Certification Kit
» [| & Simulink Check
» & Simulink Requirements
» & Simscape
» & Simulink Design Verifier
» & simulink Control Design
B 3 By Task

L] »
(@ Upgrade Advisor
(4 Code Generation Advisor

() Performance Advisor

Check for relative execution order change for Data Store Read and Data Store Write blocks
Analysis (" Triggers Update Diagram)

Check if relative execution orders for Data Store Read and Data Store Write blocks are changed in
generated code when compared with normal mode simulation.

Run This Check |

Result: /& Warning View by | Default ~

The following blocks have changed execution orders:

Data store
memory Tasks || Scoped systems |[Normal mode execution order Generated code execution order
blocks

DSM DDD |0 mDSMS Scopes|BBB, YYY1, BBB1, ZZZ, CCC,
2271, CCC1

DSM SSS |0 mDSMS Scopes||BBB, YYY1, BBBI1, ZZZ, CCC,
ZZZ1, CCCl YYY1, ZZZ71

Action

To modify block priorities for normal mode simulation to have the same relative execution order as in
generated code, click the button below:

Modify block priorities

Result:

Help |

To execute the check, open the Model Advisor and browse to the By Product > Simulink Coder

folder.

5-3

R2020b

Code Interface Configuration and Integration

Streamlined model data configuration for code generation

R2020b simplifies how you configure model data, such as block data and signal lines, for code
generation. Without affecting your model design configuration, from the Code Mappings editor in the
Simulink Coder app and code mappings API, you can configure default settings for categories of data.
Then, override those settings, as needed, for specific data elements. When producing code for data,
the code generator uses storage classes that you specify to determine properties, such as whether to
generate code that reads from and writes to a global variable or global variable pointer defined by
external code.

You can use the Code Mappings editor to map an individual model data element to:

* Auto, which specifies that the code generator use heuristics and model configuration parameter
settings (for example, Default parameter behavior) to determine how to best represent the data
element in the generated code. When possible, the code generator omits data from the code.

* A default storage class to indicate use of the specified default for the corresponding data element
category (for example, inports, model parameters, signals, and local data stores).

» Predefined storage classes, such as ExportedGlobal.

When you specify a storage class in the Code Mappings editor, you can view and set relevant storage
class properties in the Property Inspector, which also opens in the coder app. For example, for a
storage class other than Auto that you specify for an individual data element, you can specify a value
for the Identifier property to name an unnamed model data element or override a model name in the
generated code for integration purposes.

Code mappings also enable you to associate a model with code configurations for multiple platforms.

Platform System Target File Programming Language
C rapid prototyping GRT-based C

C production ERT-based C

AUTOSAR classic platform AUTOSAR C

AUTOSAR adaptive platform AUTOSAR Adaptive C++

For more information, see C Code Generation Configuration for Model Interface Elements, Code
Definition and Mapping Limitations and Considerations, Code Mappings Editor, and
coder.mapping.api.CodeMapping.

Migration of Preexisting Models

When you open a model created in a previous release, Simulink migrates data configured for code
generation within the blocks and signal lines of a model to code mappings. Data configured for code
generation within a model includes data represented by:

* Inport blocks

* Outport blocks

* Signal lines

» Block states

https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/code-definition-and-mapping-limitations-and-considerations.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/code-definition-and-mapping-limitations-and-considerations.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html

Code Interface Configuration and Integration

* Data stores
» Parameter objects in the model workspace

Simulink does not migrate data that is configured for code generation in external sources, such as the
base workspace or a data dictionary.

For information about code mappings, see C Code Generation Configuration for Model Interface
Elements, Code Mappings Editor, and coder.mapping.api.CodeMapping.

Compatibility Considerations

The code mappings interfaces for configuring data are compatible withh common data configuration
scenarios from previous releases of Simulink Coder software.

You can work around many of the incompatibilities by developing MATLAB scripts to run in Simulink
Coder. For more information, see “Functionality being removed or changed” on page 5-5 and
Migration of Model Data Configurations to Code Mappings.

Functionality being removed or changed

The new code mappings interfaces streamline how you configure model data elements for code
generation. These interfaces introduce:

* Incompatibilities with uncommon data configuration scenarios from previous releases of Simulink
Coder software.

* Changes for the use of other Simulink interfaces for configuring data, such as the Model Data
Editor, the Model Explorer, and the Signal Properties dialog box.

Simulink interface changes for data configuration
Still runs

In R2020b, the Code Mappings editor is the primary location to configure model data elements for
code generation.

* In the Model Data Editor, the Code view has been removed. The editor does not display a Code
section in the Property Inspector.

* You can no longer configure code generation properties in the Signal Properties dialog box.

¢ For Simulink.Signal objects in the model workspace, you can no longer configure code
generation properties in the Model Explorer or in the property dialog box. To configure these
elements for code generation, use the Code Mappings editor or code mappings API.

* For data objects in the model workspace other than Simulink.Signal objects, where previously
you could configure code generation properties in the Model Explorer or in the property dialog
box, links or buttons take you to the Code Mappings editor instead.

* In the Model Explorer, in the Contents pane, click the Configure link in the Storage Class
column.

* In the Model Explorer Dialog pane and in the property dialog box, on the Code Generation
tab, click Configure in Coder App.

For more information see, C Code Generation Configuration for Model Interface Elements, Code
Mappings Editor, and coder.mapping.api.CodeMapping.

3-5

https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html

R2020b

TypeQualifier property for built-in storage classes no longer used for data objects

You can no longer use the TypeQualifier property for built-in storage classes, such as
ExportedGlobal and ImportedExtern, is no longer supported for use with data associated with
data objects because more robust mechanisms are available for achieving the same results. In
previous releases, when you specified the property, the code generator added C qualifiers, such as
const and volatile, to the beginning of data declarations and definitions. You might have set this
property as:

* CoderInfo.TypeQualifier property for data objects in a workspace or data dictionary
* Port parameter RTWStorageTypeQualifier

* Block parameter RTWStateStorageTypeQualifier for Data Store Memory, Discrete Filter,
Discrete State-Space, Discrete-Time Integrator, Discrete Transfer Fcn, Discrete Zero-Pole, and
Memory blocks

To address this change in an existing model that uses the TypeQualifier property, open the model
in a release before R2020b. Create and run a MATLAB script that loads the data for the model from a
workspace or data dictionary, finds data objects that have the TypeQualifier property set to a
nonempty string value, and changes the storage class setting to a storage class predefined with the
required type qualifier (for example, storage class Const includes qualifier const in data
declarations and definitions). For an example, see Migration of Model Data Configurations to Code
Mappings.

Starting in R2020Db, if you have Embedded Coder software, use the Code Mappings editor or code
mappings API to associate data elements with a storage class that specifies a C qualifier (see Choose
Storage Class for Controlling Data Representation in Generated Code). If none of the available
storage classes meets your application requirements, define a new storage class by using the
Embedded Coder Dictionary (see Define Storage Classes, Memory Sections, and Function Templates
for Software Architecture (Embedded Coder)) . Then, use the Code Mappings Editor or code
mappings API (coder.mapping.api.CodeMapping) to associate the model data to the new storage
class.

Code configuration for parameter objects initialized in model workspace from external data
sources moved to code mappings

Starting in R2020b, the code mappings interface enables you to associate a model with multiple code
generation configurations for data. When you load a model created in a previous release of Simulink
and the model workspace is initialized from an external data source, such as a MAT-file, Simulink
moves the code configuration for the parameter object to the code mappings for that model.

Once the configuration for data elements in a model has been converted to code mappings, use the
Code Mappings editor or the code mappings API to get and set parameter code configuration
settings. See C Code Generation Configuration for Model Interface Elements, Code Mappings
Editor, and coder.mapping.api.CodeMapping.

Copies of blocks or signal lines between models no longer include code configuration

Starting in R2020b, when you use the Simulink Editor to copy a block or signal line to another model,
Simulink does not copy the code configuration associated with the copied modeling element. The
contents of the Simulink.CoderInfo object for the copied modeling element is removed. This
change:

https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html

Code Interface Configuration and Integration

» Eliminates unnecessary copies of code configuration information for data configured within the
model.

* Supports unique code configuration of data elements for a model and its active system target file.
* Promotes reuse of modeling patterns across models that have different code configurations.

To copy the code configuration information associated with a block or signal line, use the code
mappings API. For an example, see Migration of Model Data Configurations to Code Mappings. For
information about the API, see coder.mapping.api.CodeMapping.

Code configuration for data configured within a model removed for library models

Starting in R2020b, for you open a model created in a previous release, Simulink ignores the code
configuration for data elements for library models. Reconfigure code generation for data in the
context of models that use the library (see C Code Generation Configuration for Model Interface
Elements).

This change does not apply to data objects saved in the base workspace or a data dictionary.

To avoid losing the code configuration for data, in an earlier release, create and run a MATLAB script
that migrates the model to use external data objects. For an example, see Migration of Model Data
Configurations to Code Mappings.

Default (Custom) storage class removed

To prevent confusion with the concept of default code configurations that you can set up by using the
Code Mappings editor or code mappings API, you can no longer use the Default (Custom) storage
class for data configured within a model. The storage class is not recommended and will not be in a
future release for global data (data configured in the base workspace or a data dictionary).

For models created in R2020a or earlier, the storage class for a data element is set to Default
(Custom) when these conditions exist:

* The StorageClass property for the Simulink.CoderInfo object is set to Custom.

* The CustomStorageClass property for the Simulink.CoderInfo object is not modified or is
explicitly set to Default.

For an Outport block, signal line, block state, data store, or model workspace parameter set to
Default (Custom) , when you load the model, Simulink converts the storage class setting to
ExportedGlobal and displays a warning about the change. ExportedGlobal is equivalent to
Default (Custom).

Starting in R2020b, use the Code Mappings Editor or code mappings API to specify default code
generation configurations for categories of data elements. See C Code Generation Configuration for
Model Interface Elements, Code Mappings Editor, and coder.mapping.api.CodeMapping.

Changing between GRT-based and ERT-based system target file
Behavior change

Starting in R2020b, when you change the system target file setting for a model between a GRT-based
and ERT-based system target file, Simulink applies an alternative code configuration for each system
target file.

5-7

https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html

R2020b

A change between system target files can occur if you:

» Alternate between the Simulink Coder and Embedded Coder app.
* Change the active configuration set for a model.
* Change the setting of model configuration parameter System target file.

It is a best practice to configure data differently for a model depending on whether you are
generating rapid-prototyping (GRT) or production (ERT) code. Simulink associates the code
configuration with the system target file so that you can set up multiple code configurations for a
model.

To copy code mappings when you switch system target files, create and run a MATLAB script that
uses the code mappings API to copy relevant code mappings. For an example, see Migration of Model
Data Configurations to Code Mappings. For information about the API, see
coder.mapping.api.CodeMapping.

Simulink.Coderinfo object Alignment property for data configured within a model removed

The Simulink.CoderInfo object property Alignment for data configured for code generation
within a model has been removed, including data represented by:

* Inport blocks

* Outport blocks

* Signal lines

» Block states

* Data stores

* Parameter objects in the model workspace

To use the Alignment property, represent data by using data objects outside of the model. For an
example, see Migration of Model Data Configurations to Code Mappings.

APIs for controlling data interfaces
Still runs

In R2020b, code generation information for data objects configured within a model migrates from
data objects to the mapping infrastructure. This change might affect existing scripts that you use to
manage the code configuration for these data objects.

* You do not need to update scripts that use existing functions to interact with data objects
configured for code generation within a model. When you get and set code generation information
by using one of these functions, data objects now communicate with the mapping to maintain the
mapping as the single source for this information. This information includes functions such as
assignin, evalin, getVariable, get param, set param, and isequal.

For example, these workflows do not require updates:
* Getting the handle of a data object in the model workspace.

mws = get param('modelname', 'modelworkspace');
objHandle = mws.getVariable('Param');

* Evaluating an expression in the context of the model workspace.

https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/migration-of-model-data-configuration-to-code-mappings.html

Code Interface Configuration and Integration

mws.evalin("param=Simulink.Parameter; param.CoderInfo.StorageClass='ExportedGlobal';")

* Specifying code generation settings for a signal object stored on a port.

portHandles = get param('blkPath', 'PortHandles');
get param(portHandles.Outport, 'StorageClass');
set param(portHandles.Outport, 'StorageClass', 'ExportedGlobal');

* Specifying code generation settings for a root outport block.

get param('blkPath', 'StorageClass');
set param('blkPath', 'StorageClass', 'ExportedGlobal');

* Comparing data objects.

pl = Simulink.Parameter;

pl.CoderInfo.StorageClass = 'Custom';

pl.CoderInfo.CustomStorageClass = 'ExportToFile';

p2 = copy(pl);

isequal(pl, p2); % Returns true

pl.CoderInfo.StoragClass = 'ExportedGlobal';

isequal(pl, p2); % Returns false

» The function copy can no longer copy the code generation properties of data objects configured

for code generation within a model. You can instead use the new clone function to create a copy
of an object with its code generation properties. You can use the clone function only to create a
copy in the same workspace as the source object.

You can still use of existing command-line functions for configuring data objects for code generation
within a model continues, but it is recommended that you use the new code mappings API instead.
The code mappings API:

* Provides one programming interface for configuration of default code generation settings for
categories of data and individual data elements.

* Supports multiple configuration mappings for a model.

* FEliminates the need to create data objects to configure model data elements for code generation.

For information about the new code mappings API, see coder.mapping.api.CodeMapping.

ASAP2 system target being removed
Still runs

Support for asap2.tlc system target will be removed in future release. Use grt.tlc system target file
with model configuration parameter ASAP2 Interface selected instead. For more information, see
Generate an ASAP2 File.

5-9

https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/asap2-data-measurement-and-calibration.html#f20622

R2020b

Code Generation

5-10

Code descriptor information for tunable breakpoint set data in Lookup
table blocks

In R2020a, the coder.descriptor.LookupTableDataInterface and
coder.descriptor.BreakpointDataInterface objects were created only if parameters in the
lookup table data and breakpoint set data were tunable.

In R2020b, the coder.descriptor.LookupTableDatalnterface and
coder.descriptor.BreakpointDatalnterface objects are created if these conditions are true:
* Lookup table data is tunable.

* One of these conditions is true:

* Breakpoint set data is tunable.

* Breakpoint set data is nontunable and the block does not use a Simulink.LookupTable
object.

* The block uses a Simulink.LookupTable object.

If the breakpoint set data is nontunable, you can obtain additional information regarding whether the
breakpoint set data is evenly spaced or not by accessing a new object under the
coder.descriptor.FixAxisMetadata class and these subclasses:

* coder.descriptor.EvenSpacingMetadata
* coder.descriptor.NonEvenSpacingMetadata

Code generation using C++11 standard math library

In R2020b, you can generate C++ libraries and executables for Simulink models that use the C++11
(ISO) or ISO®/IEC 14882:2011(E) standard math library. To generate code by using C++11 (ISO)
math libraries, set the configuration parameter Language to C++ and set the configuration
parameter Standard math library to C++11 (ISO0).

For more information, see “Configure Standard Math Library for Target System” .

Clearer pattern of ordering of local variable declarations

In R2020a, the order of local variable declarations in the generated C/C++ code did not follow an
obvious pattern. In R2020b, the grouping of local variable declarations in the generated C/C++ code
is by type and in order of decreasing array size. For variables and array of the same type and size, the
declarations are in alphabetical order.

For example, this table shows a sample of local variable declaration groupings in R2020a and
R2020b. The R2020b declarations follow a clear pattern making it easier to locate a variable
declaration.

https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.descriptor.lookuptabledatainterface-class.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.descriptor.breakpointdatainterface-class.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.descriptor.fixaxismetadata-class.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.descriptor.evenspacingmetadata-class.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/coder.descriptor.nonevenspacingmetadata-class.html

Code Generation

Sample Local Variable Declarations in Sample Local Variable Declarations in
R2020a R2020b

static boolean T imgEdge[307200]; static real32 T b img[307200];
static uint8 T b img2[307200]; static real32 T img2[307200];
static uint8 T label[307200]; static real32 T imgRect[230400];
static real32 T imgRect[230400]; static uint8 T b img2[307200];
static real32 T b img[307200]; static uint8 T label[307200];
static real32 T img2[3072001];; static boolean T imgEdge[307200];
int32. T b r; visioncodegen BlobAnalysis 1 *obj;
int32 T c; real T cor[9];

int32 T i; real. T b B[2];

uint32 T q; real T ex;

real32 T thresh; real T pos;

real T ex; int32 T boundingbox data[240];
real T pos; int32 T c boundingbox data[60];
boolean T b boundingbox data[60]; int32. T b r;

int32 T c boundingbox data[60]; int32 T c;

int32 T boundingbox data[240]; int32 T i;

uint8 T v data[l]; real32 T e BW[400];

uint8 T label data[58564]; real32 T f BW[400];

uint32 T pointsl[8]; real32 T b x[20];

real32 T tmp data[8]; real32 T tform T[9];

real32 T tform T[9]; real32 T tmp data[8];

real32 T b x[20]; real32 T thresh;

real32 T e BW[400]; uint32 T pointsl[8];

real32 T f BW[400]; uint32 T q;

real T b B[2]; uint8 T label data[58564];

real T cor[9]; uint8 T v data[l];

visioncodegen BlobAnalysis 1 *obj; boolean T b boundingbox data[60];

Enhanced status messages for code generation

In R2020b, when you build a model, you get more information about code generation status. You can
observe the status messages at the bottom of the Simulink window and see the progress of the entire
code generation process.

Removal of space in #define

In previous releases, the code generator inserted a space between # and define in the generated
code. For example:

define rtwdemo_comments COMMON_ INCLUDES

In R2020b, the code generator removes the space between # and define in the generated code. For
example:

#define rtwdemo_comments COMMON_ INCLUDES

Query capability for target.get function

Use the target.get function to obtain a list of target feature objects that are saved in memory. You
can refine the query to list only objects with properties that match specified name-value pairs.

Previously, you used this function only to retrieve a specified target feature object from memory.

5-11

https://www.mathworks.com/help/releases/R2020b/rtw/ref/target.get.html

R2020b

Model Advisor Updates

A new Model Advisor check Check reuse of subsystem code (ID
mathworks.codegen.SubsysCodeReuse) identifies CodeReuse Subsystem blocks that do not reuse
code.

Functionality being removed or changed

rtwbuild and slbuild no longer generate model reference simulation targets by default
Behavior change

Starting in R2020b, the rtwbuild and slbuild functions do not generate model reference
simulation targets by default. Excluding the model reference simulation targets allows for faster code
generation for model hierarchies.

You can continue to generate the model reference simulation targets with the rtwbuild and
slbuild functions by using the IncludeModelReferenceSimulationTargets argument.

Models referenced in normal mode that are loaded during code generation are closed
Behavior change

Starting in R2020b, models referenced in normal mode are closed after their code is generated
unless they were loaded before code generation began. If a CloseFcn model callback deletes
workspace objects needed by other models in the model hierarchy, you receive an error. To avoid
errors during code generation, use data dictionaries, modify model callbacks, or load the affected
referenced models before starting code generation. For more information, see “Model Callbacks”.

RTW.HWDeviceRegistry support will be removed
Warns

The RTW.HWDeviceRegistry class support will be removed in a future release. If you use the
RTW.HWDeviceRegistry classin rtwTargetInfo.mand sl customization.m files to register
hardware devices, the software produces a warning. To upgrade existing definitions of hardware
devices, you can use the target.upgrade function. For more information, see “Upgrade Data
Definitions for Hardware Devices”.

5-12

Deployment

Deployment

codebuild function for independent compilation of generated code

In R2020b, you can use the codebuild function to compile generated code on a different operating
system or by using a different compiler. As compilation is independent of code generation, custom
toolchain and template makefile testing is simpler. You can create custom toolchains and template
makefiles more quickly.

Use this workflow:

Generate code on your development computer and use packNGo to package the code.
Relocate and unpack the code in the new environment.

3 Run codebuild, specifying the compiler through the BuildMethod argument. The function
builds the generated code by using the generated code description and build configuration from
the relocated buildInfo.mat file.

For more information, see Compile Code in Another Development Environment.

Configuration files for CMake build system

R2020b supports CMake, an open-source tool for build process management. After generating code
from a Simulink model or MATLAB code, use the codebuild function to generate CMakeLists.txt
files, which are configuration files for the CMake build system. When you run CMake, it uses the
configuration files to produce standard build files for your build environment, for example, makefiles,
NinjaScript files, or Microsoft Visual Studio projects.

For more information, see Compile Code in Another Development Environment.

slbuild builds multiple models

In R2020b, you can build multiple models with one invocation of the s1build command. If parallel
building of referenced models is enabled for top models, slbuild performs the build process without
the need for manual reinitialization of the parallel pool of MATLAB workers.

For more information, see Build Multiple Top Models and Reduce Build Time for Referenced Models

by Using Parallel Builds.

Build Summary for Top Model and Referenced Models

When you build models, the build process provides a summary that helps you to find out for each
model whether and why code is generated and compiled. The summary provides this information:

* List of models for which code is generated and compiled
* Reasons for rebuilding models

* Number of rebuilt models

* Duration of build

The build process displays the summary in the:

5-13

https://www.mathworks.com/help/releases/R2020b/rtw/ref/codebuild.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/packngo.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/compile-code-in-another-development-environment.html
https://www.mathworks.com/help/releases/R2020b/rtw/ref/codebuild.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/compile-code-in-another-development-environment.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/slbuild.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/slbuild.html#mw_f2462fe1-a6a1-40b6-b0fe-e2081373b6a9
https://www.mathworks.com/help/releases/R2020b/rtw/ug/reduce-build-time-for-referenced-models.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/reduce-build-time-for-referenced-models.html

R2020b

5-14

* Command Window, if you use line commands, for example, slbuild or rtwbuild.
* Diagnostic Viewer, if you use the Simulink Editor or press Ctrl+B.

For more information, see Build Multiple Top Models.

Parallel build continues after MATLAB worker stoppage

If you start a pool of MATLAB workers by running parpool (Parallel Computing Toolbox) with
'SpmdEnabled' set to false, then if a worker stops working during parallel building of referenced
models, the build process continues to run on the remaining workers in the parallel pool. Previously,
when a worker stopped working, the entire pool of workers stopped. For information about building
referenced models in parallel, see Reduce Build Time for Referenced Models by Using Parallel Builds.

Dynamic signal selection and triggering for XCP external mode
simulations

For XCP external mode simulations, you can use the External Signal & Triggering dialog box to:

» Select logged signals that you want to monitor. Changing your selection of logged signals does not
require rebuilding and redeployment of the target application.

* Configure a trigger that starts uploading of data from the target application. You can specify the
trigger signal as a logged signal in the top model or a referenced model.

For more information, see:

* Triggered Signal Monitoring for XCP External Mode Simulations
* XCP External Signal & Triggering Dialog Box

XCP external mode simulation supports half-precision data type

In R2020b, through an XCP external mode simulation, you can monitor and tune half-precision data
types within a real-time application. For example, you can:

* Use emulated half-precision data types in the application.
* Stream signals from the application to the Simulation Data Inspector and scope blocks and
viewers.

For information about running an external mode simulation, see External Mode Simulation by Using
XCP Communication.

Intel C and C++ toolchain use with Windows

You can compile generated code by using Intel C and C++ compilers for Windows. In R2020b, you
can use:

* Intel Parallel Studio XE 2020 with Microsoft Visual Studio 2017, 2019
* Intel Parallel Studio XE 2019 with Microsoft Visual Studio 2015, 2017, 2019
* Intel Parallel Studio XE 2018 with Microsoft Visual Studio 2015, 2017, 2019

Support for Intel Parallel Studio XE 2017 is removed.

https://www.mathworks.com/help/releases/R2020b/simulink/slref/slbuild.html#mw_f2462fe1-a6a1-40b6-b0fe-e2081373b6a9
https://www.mathworks.com/help/releases/R2020b/parallel-computing/parpool.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/reduce-build-time-for-referenced-models.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/external-mode-simulation-with-xcp-communication.html#mw_f8ea8511-cfa0-4f32-8bf0-a80611c06e81
https://www.mathworks.com/help/releases/R2020b/rtw/ug/graphical-controls-for-xcp-external-mode-simulations.html#mw_2a8d6902-f012-4814-aca2-b572c71ef61c
https://www.mathworks.com/help/releases/R2020b/rtw/ug/external-mode-simulation-with-xcp-communication.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/external-mode-simulation-with-xcp-communication.html

Deployment

For more information, see Supported Compilers.

Simulink Coder Support Package for NVIDIA Jetson CPUs: Generate,
build, and deploy Simulink models on Jetson CPU

The Simulink Coder Support Package for NVIDIA® Jetson® CPUs is available from release R2020b
onwards. You can use the support package to generate, build, and deploy Simulink models on the
Jetson CPU.

Functionality being removed or changed

Passing RTW.BuildInfo to a hook function
Behavior change

If you pass an RTW.BuildInfo object as an argument to a hook function, for example,
before make, the object content in R2020b differs from the object content in R2020a. The name of
the link object no longer includes the library extension. This table shows two examples.

R2020a R2020b

>> buildInfo.ModelRefs(1).Name
ans =

"refmodel rtwlib.lib'

>> buildInfo.ModelRefs (1).Name
ans =

'refmodel rtwlib'

>> buildInfo.LinkObj (1) .Name

ans =

'rtwshared. lib'

>> buildInfo.LinkObj (1) .Name
ans =

'rtwshared'

For more information about hook functions, see Customize Build Process with STF make rtw hook

File.

5-15

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/customizing-the-target-build-process-with-the-stf-make-rtw-hook-file.html
https://www.mathworks.com/help/releases/R2020b/rtw/ug/customizing-the-target-build-process-with-the-stf-make-rtw-hook-file.html

R2020b

Performance

Faster code generation without generating model reference
simulation targets

Code generation for model hierarchies is faster than in previous releases.

By default, code generation no longer generates the model reference simulation targets. For
compatibility considerations, see “rtwbuild and slbuild no longer generate model reference simulation
targets by default” on page 5-12.

Unused variables elimination for n-D Lookup Table blocks in generated
code

In R2020a, the generated code for n-D Lookup Table blocks contained unused DWork vectors. In
R2020b, you can generate code with some of the unnecessary DWork vectors eliminated. This
optimization improves the efficiency of the generated code.

Consider this model mLUT that has a 3-D Lookup Table block.

3-D T{u)
L1} {01
L2} (2 1)
L3 } (3

In R2020a, the code generator produced this C code where the header file mLUT . h contained the
DWork vectors m_bpLambda and m bpIndex which were never used.

typedef struct {

real T m bpLambdal[3]; /* '<Root>/3-D Lookup Table' */
uint32 T m bpIndex[3]; /* '<Root>/3-D Lookup Table' */
} DW mLUT T;

In R2020Db, the code generator produces code without the unused DWork vectors.

5-16

Verification

Verification

5-17

R2020b

Check bug reports for issues and fixes

5-18

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2020a

Version: 9.3
New Features

Bug Fixes

R2020a

Model Architecture and Design

6-2

Digital certificate signing for protected models

In R2020a, you can attach a digital signature to a protected model. To sign your protected model, use
a PFX format digital certificate. When you share your protected model with a third party, they can
verify that the model was signed by you and was not changed after you signed it. To sign your
protected model, use these new functions.

Function Description

Simulink.ProtectedModel.sign Attach digital signature to protected model

Simulink.ModelReference.ProtectedM |Input password for certificate file

odel.setPasswordForCertificate

You can also use the new 'Sign' argument of the Simulink.ModelReference.protect function
to sign the model when you protect it. For more information, see Sign a Protected Model.

Rate Transition block deterministic mode support for concurrent
execution

R2020a adds deterministic mode support to the Rate Transition block for models partitioned and
configured for concurrent execution. You can configure a model for concurrency and configure Rate
Transition blocks in that model so that the code generator produces code that transfers data
predictably. To enable concurrent task execution, select the model configuration parameter Allow
tasks to execute concurrently on target. To enable deterministic mode for a Rate Transition block,
select the block parameter Ensure deterministic data transfer (maximum delay). For example, if
you are checking for a match between simulation and code generation numeric results for a model
that uses concurrent task execution on multicore target hardware, select model configuration
parameter Allow tasks to execute concurrently on target and Rate Transition block parameter
Ensure deterministic data transfer (maximum delay).

For more information, see Rate Transition block and Multicore Processor Targets (Simulink).

C/C++ message-based communication provides length argument for
service functions

C/C++ message support now generates an additional parameter to specify message payload length in
service functions. For more information, see Generate C or C++ Code for Message-Based
Communication in Simulink.

C message-based communication defines service data types in one
location in generated code

C code generated for message-based communication now defines service data types once in a shared
folder accessible across multiple models. Previously, service types were defined in multiple locations
in the generated code (the header file of each model in the message chain). For more information, see
Generate C or C++ Code for Message-Based Communication in Simulink.

https://www.mathworks.com/help/releases/R2020a/rtw/ref/simulink.protectedmodel.sign.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/simulink.modelreference.protectedmodel.setpasswordforcertificate.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/simulink.modelreference.protectedmodel.setpasswordforcertificate.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/sign-a-protected-model.html
https://www.mathworks.com/help/releases/R2020a/simulink/slref/ratetransition.html
https://www.mathworks.com/help/releases/R2020a/simulink/multicore-processor-targets.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html

Model Architecture and Design

C/C++ message-based communication available for reusable
subsystems

C/C++ message support is now available for reusable subsystems that contain Send or Receive
blocks. Previously, message-based communication code generation was not supported for models that
contained reusable subsystems with Send or Receive blocks. For more information, see Generate C or
C++ Code for Message-Based Communication in Simulink.

Protect models for use with a Simulink license

In R2020a, when you protect a model that contains blocks that require another product license in
addition to Simulink, using the protected model in a separate MATLAB session requires only a
Simulink license. For more information about protecting models, see Protect Models to Conceal
Contents.

Computer Vision Toolbox Interface for OpenCV in Simulink: Import
OpenCV code into Simulink

The Computer Vision Toolbox™ Interface for OpenCV in Simulink support package enables you to
import OpenCV code into a Simulink model. To install the support package, first click Add-Ons on the
MATLAB Home tab. In the Add-On Explorer window, find and click the support package, and then
click Install. This support package requires Computer Vision Toolbox. After installing the support
package, you can import your OpenCV code and create Simulink library by using the OpenCV
Importer app. The importer uses two OpenCV conversion blocks ToOpenCV and FromOpenCV. You
can generate C++ code from the created Simulink model and deploy the code into your target
hardware. For more information, see Install and Use Computer Vision Toolbox OpenCV Interface for
Simulink (Computer Vision Toolbox).

6-3

https://www.mathworks.com/help/releases/R2020a/rtw/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/create-a-protected-model-using-the-model-block-context-menu.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/create-a-protected-model-using-the-model-block-context-menu.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/toopencv.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/fromopencv.html
https://www.mathworks.com/help/releases/R2020a/vision/ug/opencv-interface_mw_d14de6ab-e696-4f26-bd1d-4699eac7927d.html
https://www.mathworks.com/help/releases/R2020a/vision/ug/opencv-interface_mw_d14de6ab-e696-4f26-bd1d-4699eac7927d.html

R2020a

Data, Function, and File Definition

6-4

Constant parameters outside const_params.c file

In R2019b, when the model configuration parameter Generate shared constants
(GenerateSharedConstants) was cleared or set to off, the code generator defined the constant
parameters in a nonshared area, in the model ert rtw folder in the model data. c file.

In R2020a, when the model configuration parameter Generate shared constants is cleared or set to
off, the code generator generates the constant parameters shared across the model reference
hierarchy in a shared location, in the slprj/target/ sharedutils folder, but outside the

const params. c file. The code generator defines the individual constant parameters in the reusable
library subsystem files individually.

For more information, see Shared Constant Parameters for Code Reuse.

https://www.mathworks.com/help/releases/R2020a/rtw/ug/code-generation-of-shared-constant-parameters-for-code-reuse.html

Code Generation

Code Generation

Lookup Table blocks code description in generated code by using Code
Descriptor API

To access information about lookup table blocks that have tunable parameters and tunable breakpoint
set data, you can now retrieve a coder.descriptor.LookupTableDataInterface and a
coder.descriptor.BreakpointDatalnterfacecoder.descriptor.BreakpointDatalnterf
ace object. Use the getDataInterfaces method to retrieve information about these lookup table
blocks in the generated code:

* 1-D Lookup Table

* 2-D Lookup Table

* n-D Lookup Table

* Interpolation Using Prelookup

* Direct Lookup Table (n-D)

* Sine

* Cosine

For example, create a coder.codedescriptor.CodeDescriptor object for the model.
codeDescObj = coder.getCodeDescriptor(model)

Retrieve properties of the Lookup Table block and breakpoint set in the generated code.

params = getDatalnterfaces(codeDescObj, 'Parameters')

params is an array of coder.descriptor.LookupTableDataInterface and
coder.descriptor.BreakpointDatalnterface objects.

The coder.descriptor.LookupTableDataInterface class has these methods:

* islLookupTableDatalInterface
* getAllParameters

The coder.descriptor.BreakpointDatalnterface class has these methods:

+ isBreakpointDatalInterface

Documentation for tlc() function being removed

Starting in R2020a, documentation for the t1c function is removed. Support for this function in
Simulink Coder will be removed in a future release. The t1c function was used to invoke the Target
Language Compiler (TLC) at the MATLAB command prompt. The TLC converted the model
description file, model . rtw, into target-specific code or text.

Data interface type name changes in Code Descriptor API

In the Code Descriptor API, to match the parameter categories in the Code Mappings editor, these
changes were made to the data interface type names:

https://www.mathworks.com/help/releases/R2020a/rtw/ref/coder.descriptor.lookuptabledatainterface-class.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/coder.descriptor.breakpointdatainterface-class.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/coder.descriptor.breakpointdatainterface-class.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/coder.codedescriptor.codedescriptor.getdatainterfaces.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/coder.codedescriptor.lookuptabledatainterface.islookuptabledatainterface.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/coder.codedescriptor.lookuptabledatainterface.getallparameters.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/coder.codedescriptor.breakpointtabledatainterface.isbreakpointdatainterface.html

R2020a

* GlobalParameters is renamed to ExternalParameterQObjects.
* LocalParameters is renamed to ModelParameters.

For more information, see coder.descriptor.Datalnterface.

6-6

https://www.mathworks.com/help/releases/R2020a/rtw/ref/coder.descriptor.datainterface-class.html

Deployment

Deployment

Intel C and C++ toolchain support for Windows

You can compile generated code by using Intel C and C++ compilers for Windows. R2020a supports:

* Intel Parallel Studio XE 2017 with Microsoft Visual Studio 2015, 2017
* Intel Parallel Studio XE 2018 with Microsoft Visual Studio 2015, 2017
* Intel Parallel Studio XE 2019 with Microsoft Visual Studio 2015, 2017, 2019

For more information, see Supported Compilers.

Parallel pool automatically starts for parallel building of referenced
models

If you have Parallel Computing Toolbox™ software and you select the Enable parallel model
reference builds check box for the top model of a model reference hierarchy, you can run the build
process without checking the status of the parallel pool of MATLAB workers. If the parallel pool is not
running, the build process starts the parallel pool by using the default cluster profile.

Previously, you were required to check the status of the parallel pool and start the parallel pool if it
was not running.

The build process no longer creates parallel build log files in reference model subfolders within the
build folder.

* Ifyou start the build process from the command line, the build process displays build log
messages in the Command Window.

* Ifyou start the build process from the Simulink Editor Code perspective, the build process
displays build log messages in the Diagnostic Viewer.

For more information, see Reduce Build Time for Referenced Models by Using Parallel Builds.

Simplified workflow for external mode Run on Custom Hardware app

The Run on Custom Hardware app, through the Hardware tab, provides enhancements that simplify
the workflow for running external mode simulations and tuning parameters.

On the Hardware tab, the Run on Hardware section now displays the Stop Time field. Previously,
the field was accessible only through a drop-down list.

During an external mode simulation, you can tune parameters by modifying their values in the
Parameters tab of the Model Data Editor. To open the Parameters tab, in the Prepare section of the
Hardware tab, click the Tune Parameters button.

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/reduce-build-time-for-referenced-models.html

R2020a

6-8

Model Data Editor

Inports/Outports Signals Data Stores States Parameters

Design ~| |52 @&
|y Carrier Phase
|s3 Carrier Gain Gain 1
|53 Constant Value
[signal Amplitude 2
s Signal Bias
|33 Signal Frequency 0.1131761919764
|53 Signal Phase
s Signal Gain Gain 2

When you modify a value, Simulink immediately downloads the value to the target application. If you
select Batch Mode in the Prepare section of the Hardware tab, you can modify multiple values, and
then download the values simultaneously by clicking the Update All Parameters button.

In the Prepare section of the Hardware tab, you can download values of block parameters that are
variables in the MATLAB workspace by clicking the Update All Parameters button. Previously, this
functionality was provided only by pressing CTRL+D.

For more information, see External Mode Simulation by Using XCP Communication and External
Mode Simulation with TCP/IP or Serial Communication.

Limit data quantity logged during XCP external mode simulation

Previously, XCP external mode simulations did not support controls that limited the amount of signal
data logged by Simulink on your development computer. In R2020a, in the Signal Properties dialog
box, on the Logging and accessibility tab, an XCP external mode simulation supports these options:

* Limit data points to last
* Decimation

For more information, see Logging and Accessibility Options (Simulink).

XCP external mode simulations on Mac computers

The XCP slave platform abstraction layer supports the Apple macOS operating system. You can now
run host-based XCP external mode simulations on Mac computers.

For more information, see External Mode Simulation by Using XCP Communication.

Checksums determine whether object code is up to date

When you build a model, the software uses checksums to determine whether object code is up to date
and recompilation of generated code is required. Previously, the software used file timestamps. For
more information, see Use of Checksums in Recompilation of Generated Code .

https://www.mathworks.com/help/releases/R2020a/rtw/ug/external-mode-simulation-with-xcp-communication.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/external-mode-simulation-with-tcpip-or-serial-communication.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/external-mode-simulation-with-tcpip-or-serial-communication.html
https://www.mathworks.com/help/releases/R2020a/simulink/gui/logging-and-accessibility-options.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/external-mode-simulation-with-xcp-communication.html
https://www.mathworks.com/help/releases/R2020a/rtw/ug/program-builds.html#mw_aae054a4-4c99-436d-8a72-6ac0750505d8

Performance

Performance

6-9

R2020a

Verification

6-10

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

6-11

https://www.mathworks.com/support/bugreports/

R2019b

Version: 9.2
New Features
Bug Fixes

Compatibility Considerations

R2019b

Model Architecture and Design

7-2

Generate C++ Code for Software Compositions with Message-Based
Communication

R2019b introduces C++ and C code generation for message-based communication between Simulink
model components using Messages & Events library Send, Receive, and Queue blocks. This release
also introduces C++ code generation for message-based communication between Simulink top
models and external message protocol services (middleware or operating systems).

For more information about code generation for message-based communication, see Generate C or C
++ Code for Message-Based Communication in Simulink and Generate C++ Code from Top Models
for Message-Based Communication By Using External Message Protocols. For more information
about the blocks, see Send, Receive, and Queue block descriptions.

Model integration with row-major data for MATLAB Function block and
Stateflow charts

In R2019b, you can use row-major array layout in a MATLAB Function block to more easily and
efficiently integrate your model with row-major data and algorithms. When you specify row-major
array layout in the block, the layout applies to simulation and C/C++ code generation. To specify the
array layout for the block, use the coder.rowMajor and coder.columnMajor functions. For more
information, see Generate Row-Major Code for Model That Contains a MATLAB Function Block.

Row-major layout is now supported in Stateflow® charts, state transition tables, and truth table

blocks, including:

* Charts that use MATLAB as the action language.

* Charts that contain truth table functions and MATLAB functions.

* Charts that use custom C code where custom variables and arguments to custom functions are
scalars or vectors.

For more details, see the “Enhanced support of row-major data in Stateflow blocks” (Stateflow)
release note in Stateflow.

TLC block files and rtwmakecfg files for S-functions

Previous versions of the Legacy Code Tool generated a TLC block file and an rtwmakecfg.m file that
checked the Simulink version number. These files issued an error when run in certain older releases.
In R2019b only, using these files might result in an error when building the S-functions for which the
files were generated.

Compatibility Considerations

To detect the affected files, use the Upgrade Advisor check Check model for S-function upgrade
issues. To fix the affected files, click Modify Files. Or, regenerate the files by using the Legacy Code
Tool.

For more information, see Import Calls to External Code into Generated Code with Legacy Code Tool.

https://www.mathworks.com/help/releases/R2019b/simulink/slref/send.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/receive.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/queue.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/generate-cpp-code-for-top-model-for-passing-messages-using-external-message-protocols.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/generate-cpp-code-for-top-model-for-passing-messages-using-external-message-protocols.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/send.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/receive.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/queue.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/coder.rowmajor.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/coder.columnmajor.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/generate-row-major-code-with-matlab-function-block.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/legacy-code-tool-code-insertion.html

Data, Function, and File Definition

Data, Function, and File Definition

Duplicate enumeration member names in generated code

In R2019a, Simulink Coder produced an error if you had duplicate enumeration member names in the
generated code. In R2019b, you can control duplicate enumeration member names in the generated
code. Use the configuration parameter Duplicate enumeration member names to generate an
error or warning message or allow duplicate enumeration member names in different enumeration
types during code generation. Duplicate enumeration member names is set to error by default.
You can use duplicate enumeration member names only if two enumerations have the same
StorageType and have these specifications:

* DataScope setto 'Imported’
* StorageTypesetto 'int8', 'intl6"', 'int32"', 'uint8', or 'uintl6’
* Value is the same

For example, consider these enumerations:

typedef int32 T enumA;

#define a (0)
#define p (1)
typedef int32 T enumB;
#define b (0)
#define p (1)

These enumerations have the same int32 storage type. The enumeration member p with value 1 is
the same for enumA and enumB. The configuration parameter Duplicate enumeration member
names enables you to generate an error or warning message or allow code generation for duplicate
enumeration member names. For more information, see Control Use of Duplicate Enumeration
Member Names.

https://www.mathworks.com/help/releases/R2019b/rtw/ug/enumerations.html#mw_951eeb72-ef2e-4c0a-9cc9-ea2c5dbb92d7
https://www.mathworks.com/help/releases/R2019b/rtw/ug/enumerations.html#mw_951eeb72-ef2e-4c0a-9cc9-ea2c5dbb92d7

R2019b

Code Generation

Simulink Coder contextual tabs on the Simulink Toolstrip

To assist you in your code generation workflow, use the Simulink Coder contextual tabs.

To access the C Code or the C++ Code tab, open the Simulink Coder app from the Apps gallery tab
on the Simulink Toolstrip. To support common code generation workflow tasks, the tab provides
Simulink Coder functionality corresponding to each task. The Simulink Coder app places the model in
the Simulink Editor Code perspective. You can apply code generation settings for model elements in
the Model Data Editor. The integrated help pane provides quick access to tools, video tutorials, and
links to more information.

SIMULATION
CH 4 Fid
a q’ (\":) @ Code for i % (g
Generic Quick C/C++ Code SEttir‘IgS rtwdema_basicsc Build C'pen F'Ep:l‘t Share
CCode = Start Advisor - - hd -
QUTPUT | ASSISTANCE PREPARE GEMERATE CODE RESULTS SHARE

The Simulink Coder app supports models configured with GRT-based system target files. If you have
not configured your model or model hierarchy with a GRT-based system target file, Simulink Coder
prompts you to either open an app that supports your model's system target file or change your
model's system target file to grt.tlc.

For more information, see “Simulink Toolstrip: Access and discover Simulink capabilities when you
need them”.

Model configuration and code generation by using Simulink Coder
Quick Start

The new Simulink Coder Quick Start tool helps you quickly generate code for rapid prototyping from
your Simulink model.

First select preferences about your code generation output and objective. Then, the tool presents the
parameter changes required to generate code. If you choose to generate code, the tool executes the
changes to your configuration set and generates the code.

When code generation is complete, links to the documentation present possible next steps, such as
preserving data in the generated code. To use the Simulink Coder Quick Start tool, open the Simulink
Coder app and click Quick Start. For more information, see Generate Code by Using the Quick Start
Tool.

Export of hardware device data

R2019b provides the target.export function, which enables you to share hardware device data
across computers and users. For more information, see Export Hardware Device Data.

Data validation for hardware device features

R2019a introduced a new mechanism for registering hardware devices, which uses the target feature
classes, target.Processor and target.LanguageImplementation. R2019b exposes

https://www.mathworks.com/help/releases/R2019b/rtw/ug/simulinkcoder_quick_start.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/simulinkcoder_quick_start.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/target.export.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/register-new-hardware-devices.html#mw_c9bc4703-d834-412b-93bb-b46908e40cb8
https://www.mathworks.com/help/releases/R2019b/rtw/ref/target.processor-class.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/target.languageimplementation-class.html

Code Generation

target.0bject, which is the base class for target feature classes. To validate the data integrity of
objects that belong to target feature classes, use the IsValid property or validate method.

Consider an example where you create a target.Processor object and associate an existing
language implementation with the object.
myProcessor = target.create('Processor');

myProcessor.LanguageImplementations = target.get('LanguageImplementation', ...
'"ARM Compatible-ARM Cortex');

To validate the created object, run myProcessor.IsValid or myProcessor.validate().
myProcessor.IsValid
ans =

logical

0

myProcessor.validate()

Error using target.Processor/validate

Target data validation failed.

* Undefined property "Name" in "Processor" object.
* Undefined identifier in "Processor" object.

The validation fails because these target.Processor properties are not specified:

* Name — Processor name
* Id — Object identifier

You can specify a processor name, which also specifies the object identifier.
myProcessor.Name = 'MyProcessor';

Check the validity of myProcessor.

myProcessor.IsValid

ans =

logical
1

The validity of the object is established.

When you use the target.add function to register a target feature object, the software also checks
the validity of the object.

For more information, see Register New Hardware Devices.

Upgrade of hardware device definitions

R2019b provides the target.upgrade function, which enables you to upgrade existing definitions of
hardware devices. The function uses a specific upgrade procedure to create objects from definitions
in current data artifacts. By default, the function also creates the file,
registerUpgradedTargets.m. To register the upgraded definitions, run
registerUpgradedTargets.m.

For more information, see Upgrade Data Definitions for Hardware Devices.

7-5

https://www.mathworks.com/help/releases/R2019b/rtw/ref/target.object-class.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/register-new-hardware-devices.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/target.upgrade.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/register-new-hardware-devices.html#mw_62dabfd5-5891-4eae-8c68-e5c6b8ddcc60

R2019b

Compatibility Considerations

Support for the use of rtwTargetInfo.mand sl customization.m files to register hardware
devices through the RTW.HWDeviceRegistry class will be removed in a future release. To update
the registration mechanism, use the target.upgrade function.

Model Configuration Parameters Symbols pane renamed to Identifiers

In the Model Configuration Parameters dialog box, the Code Generation > Symbols pane has been
renamed to Code Generation > Identifiers. For more information, see Model Configuration
Parameters: Code Generation Interface.

Simulink cache file support for code generation artifacts

Simulink cache files now support code generation artifacts. The cached artifacts can reduce the time
required for successive simulation and code generation. Caching occurs automatically when you
simulate models in accelerator or rapid accelerator mode, or generate code for models. When
Simulink cache files are available in the Simulation cache folder (Simulink), simulation and code
generation automatically extract the relevant artifacts from the Simulink cache file. To share
Simulink cache files with team members, you can store them in a network location.

For more information, see Simulink Cache Files for Incremental Code Generation.

Retrieve information about shared local data stores in the generated
code by using Code Descriptor API

You can now retrieve a coder.descriptor.Datalnterface object for shared local data stores in
the generated code, in addition to inports, outports, parameters, global data stores, and internal data.
Use the getDatalInterfaces method to retrieve information about shared local data stores in the
generated code.

For example, create a coder.codedescriptor.CodeDescriptor object for the model.
codeDescriptor = coder.getCodeDescriptor(model)

Retrieve properties of the shared local data store in the generated code.

dataInterface = codeDescriptor.getDataInterfaces('SharedLocalDataStores")

datalnterfaceis an array of coder.descriptor.DataInterface objects.

For more information, see Get Code Description of Generated Code.

https://www.mathworks.com/help/releases/R2019b/rtw/ref/code-generation-pane-interface.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/code-generation-pane-interface.html
https://www.mathworks.com/help/releases/R2019b/simulink/gui/simulink-preferences-general-pane.html#bslolo1-1
https://www.mathworks.com/help/releases/R2019b/rtw/ug/simulink-cache-files-for-incremental-code-generation.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/coder.descriptor.datainterface-class.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/coder.codedescriptor.codedescriptor.getdatainterfaces.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/get-code-description.html

Deployment

Deployment

Run on Custom Hardware app for external mode simulations

The Run on Custom Hardware app enables you to run external mode simulations on your
development computer or target hardware that is not supported by MathWorks® support packages.
To run an external mode simulation, you:

Build the target application on your development computer.

Deploy the target application to the target hardware.

Connect Simulink to the target application that runs on the target hardware.

Start execution of generated code on the target hardware.

W N K=

With the app, you can:

* Perform the steps separately or with one click.
* Register custom launchers that deploy the target application.

The app is in the Hardware tab. To open the tab, on the Simulink toolstrip Apps tab, click Run on
Custom Hardware. Or, on the Embedded Coder app C Code tab, select Verify Code > Run on
Custom Hardware.

For more information, see:

* Host-Target Communication with External Mode Simulation
* External Mode Simulation by Using XCP Communication
» External Mode Simulation with TCP/IP or Serial Communication

Specify CacheFolder or CodeGenFolder separately

In R2019b, you can use Simulink.fileGenControl to specify separately nondefault values for
these Simulink preferences:

 CacheFolder
* CodeGenFolder

This table shows R2019a and R2019b behavior.

Preference Setting CodeGenFolder -- Default CodeGenFolder -- Nondefault
CacheFolder -- Default |Supported in R2019a and Not supported in R2019a
R2019b
Supported in R2019b
CacheFolder -- Not supported in R2019a Supported in R2019a and R2019b
Nondefault
Supported in R2019b

Removal of support for STF_par_cfg_chk

R2019b does not support the STF_par cfg chk function for checking the configuration of parallel
workers.

7-7

https://www.mathworks.com/hardware-support.html?q=&page=1
https://www.mathworks.com/help/releases/R2019b/rtw/ug/set-up-and-use-hosttarget-communication-channel.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/external-mode-simulation-with-xcp-communication.html
https://www.mathworks.com/help/releases/R2019b/rtw/ug/external-mode-simulation-with-tcpip-or-serial-communication.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/simulink.filegencontrol.html

R2019b

packNGo packages buildinfo.mat files for folder hierarchy

In R2019D, for the packNGo function, if you specify 'hierarchical' for the 'packType'
argument, the function packages the buildInfo.mat files for the top model, referenced model, and
shared utility folders. Previously, the function packaged the buildInfo.mat file only for the top

model.

https://www.mathworks.com/help/releases/R2019b/rtw/ref/packngo.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2019a

Version: 9.1
New Features
Bug Fixes

Compatibility Considerations

R2019a

Model Architecture and Design
Functionality being removed or changed

Compatibility Considerations

Previously, if a protected model referenced a model that shared a name with either a different
protected model or a different model within the hierarchy of another protected model, you could
simulate and generate code for a model that referenced both protected models. In R2019a,
attempting to generate code for such a top model, or attempting to simulate such a top model in
software-in-the-loop (SIL), processor-in-the-loop (PIL), or rapid accelerator modes, results in an error.
For more information, see Protect Models to Conceal Contents.

8-2

https://www.mathworks.com/help/releases/R2019a/rtw/ug/create-a-protected-model-using-the-model-block-context-menu.html

Data, Function, and File Definition

Data, Function, and File Definition

8-3

R2019a

Code Generation

8-4

Register new hardware devices

Extend the range of supported hardware by using the target.Processor and
target.LanguageImplementation classes to register new devices.

For details, see Register New Hardware Devices.

Japanese translation for code generation report

When running Simulink Coder in a Japanese locale, the code generation report is in Japanese.

Simulink Coder contextual tabs on the Simulink Toolstrip Tech Preview

In R2019a, you have the option to turn on the Simulink Toolstrip. For more information, see “Simulink
Toolstrip Tech Preview replaces menus and toolbars in the Simulink Desktop”.

The Simulink Toolstrip includes contextual tabs, which appear only when you need them. The
Simulink Coder contextual tabs include options for completing actions that apply only to Simulink
Coder.

* To access the C Code tab, open the Simulink Coder app from the App gallery tab on the Simulink
Toolstrip. If the C++ Code tab opens, select C code from the Output section of the gallery.

* To access the C++ Code tab, open the Simulink Coder app from the App gallery tab on the
Simulink Toolstrip. If the C Code tab opens, select C++ code from the Qutput section of the

gallery.
* To access the Hardware tab, in the C Code tab, select Verify > Run on Custom Hardware.

Documentation does not reflect the addition of the Simulink Coder contextual tabs.

Retrieve information about internal data in the generated code by
using Code Descriptor API

You can now retrieve a coder.descriptor.Datalnterface object for internal data in the
generated code, in addition to inports, outports, parameters, and global data stores. Use the
getDataInterfaces method to retrieve information about these internal data structures in the
generated code:

» DWork vectors
* Block I/O
* Zero-crossings

For example, build the rtwdemo counter model.
rtwbuild('rtwdemo counter"')
Create a coder.codedescriptor.CodeDescriptor object for the model.

codeDescriptor = coder.getCodeDescriptor('rtwdemo counter')

https://www.mathworks.com/help/releases/R2019a/rtw/ref/target.processor-class.html
https://www.mathworks.com/help/releases/R2019a/rtw/ref/target.languageimplementation-class.html
https://www.mathworks.com/help/releases/R2019a/rtw/ug/register-new-hardware-devices.html
https://www.mathworks.com/help/releases/R2019a/rtw/ref/coder.descriptor.datainterface-class.html
https://www.mathworks.com/help/releases/R2019a/rtw/ref/coder.codedescriptor.codedescriptor.getdatainterfaces.html

Code Generation

Retrieve a list of all data interface types in the generated code.
datalnterfaceTypes = codeDescriptor.getDatalnterfaceTypes()
dataInterfaceTypes has these values:

{'Inports' }

{'Outports" }

{'InternalData'}
Retrieve properties of the internal data in the generated code.

datalnterface = codeDescriptor.getDatalInterfaces('InternalData')

datalnterfaceis an array of coder.descriptor.DataInterface objects. Obtain the details of
the first internal data of the model by accessing the first location in the array.

datalnterface(1l)
The first coder.descriptor.Datalnterface object with properties is returned.

Type: [1x1 coder.descriptor.types.Integer]
SID: 'rtwdemo counter:15'
GraphicalName: 'X g'
VariantInfo: [0x0 coder.descriptor.VariantInfo]
Implementation: [1x1 coder.descriptor.StructExpression]
Timing: [1x1 coder.descriptor.TimingInterface]

R2019a

Deployment

8-6

Separate makefile for shared code and simplified template makefiles

R2019a provides a simplified process for compiling and linking generated code. The build process:

* Creates a separate makefile for shared utility code, for example, slprj/ert/ sharedutils/
rtwshared.mk.

* No longer uses these template makefile tokens:

* |>S_FUNCTIONS <|

* |>S_FUNCTIONS OBJ <|

* |>SHARED SRC <|

* |>SHARED SRC DIR <]

* |>SHARED BIN DIR <|

* |>SHARED LIB <|

* |>MODELREF INC PATH <]

If you specify a template makefile that contains any of those tokens, the build process produces a

warning. If you want to suppress the warning, in the template makefile, insert the text #
NO WARN LEGACY TOKENS.

* Performs faster parallel builds for some models, for example, models that use many shared utility
files.

For more information, see Customize Template Makefiles.

New configuration property in shared utility checksum hash table

In the shared utility checksum hash table, toolchainOrTMF replaces the tmfName and
toolchainName properties.

If your build process uses a toolchain or a template makefile that is associated with a toolchain, the
toolchainOrTMF value provides the name of the toolchain.

If your build process uses a template makefile, the toolchainOrTMF value provides the name of the
template makefile.

For more information, see Manage the Shared Utility Code Checksum.

Read and write data over serial port using BeagleBone Blue SCI blocks

The Simulink Coder Support Package for BeagleBone® Blue Hardware supports the SCI Read and SCI
Write blocks. You can use these blocks to read and write serial data to the Universal Asynchronous
Receiver Transmitter (UART) on the BeagleBone hardware.

Measure data using BeagleBone Blue sensor blocks

The Simulink Coder Support Package for BeagleBone Blue Hardware supports the Barometer and
MPU9250 blocks. These blocks add the following functionality:

https://www.mathworks.com/help/releases/R2019a/rtw/ug/customizing-template-makefiles.html
https://www.mathworks.com/help/releases/R2019a/rtw/ug/generate-shared-utility-code-c1a54f83f920.html#mw_1a8c9aac-a5e6-4847-be04-547c0a5fb591

Deployment

* Barometer: Measure barometric air pressure around the BMP280 sensor.

* MPU9250: Measure acceleration, angular rate, and magnetic field along the axes of the MPU9250
sensor. You can also calculate fusion values, such as Euler angles and quaternions.

XCP slave memory allocation for external mode signal logging

For a GRT or ERT system target file, if you select External mode and set Transport layer to XCP on
TCP/IP or XCP on Serial, you enable Static memory allocation and Static memory buffer
size. In the Static memory buffer size field, you can specify the size of XCP slave memory allocated
for signal logging.

For more information, see:

* External Mode Simulation with XCP Communication
» Static memory allocation

https://www.mathworks.com/help/releases/R2019a/rtw/ug/external-mode-simulation-with-xcp-communication.html
https://www.mathworks.com/help/releases/R2019a/rtw/ref/static-memory-allocation.html

R2019a

Performance

8-8

Inplace updates for Assignment and Bus Assignment blocks

In R2019a, the name of the parameter Perform inplace updates for Bus Assignment blocks on
the Optimization tab has been updated to Perform inplace updates for Assignment and Bus
Assignment blocks to reflect the reuse of input and output variables of Bus Assignment and
Assignment blocks if possible. For further information refer to Perform in-place updates for
Assignment and Bus Assignment blocks .

New location for optimization configuration parameter

Previously, in the Configuration Parameters dialog box, the Signal storage reuse parameter was on
the Simulation Target pane. In R2019a, the Signal storage reuse parameter is on the Code
Generation > Optimization pane.

https://www.mathworks.com/help/releases/R2019a/rtw/ref/perform-inplace-updates-for-bus-assignment-blocks.html
https://www.mathworks.com/help/releases/R2019a/rtw/ref/perform-inplace-updates-for-bus-assignment-blocks.html

Verification

Verification

8-9

R2019a

Check bug reports for issues and fixes

8-10

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2018b

Version: 9.0
New Features

Bug Fixes

R2018b

Model Architecture and Design

9-2

Data, Function, and File Definition

Data, Function, and File Definition

9-3

R2018b

Code Generation

Row-Major Array Layout: Simplify integration with external C/C++
code for Lookup Table and other blocks

The code that you generate can store array elements in column-major or row-major array layout.
MATLAB uses column-major array layout by default, whereas the C/C++ languages use row-major
layout by default.

For example, consider matrix A which is a 4x3 matrix:

In column-major array layout, the elements of the columns are contiguous in memory. A is
represented in the generated code as:

1 4 7 10 2 5 8 11 3 6 9 12

In row-major array layout, the elements of the rows are contiguous. A is represented in the generated
code as:

1 2 3 4 5 6 7 8 9 10 11 12

In previous releases, the code generator produced C/C++ code that used column-major array layout.
In R2018b, you can choose to generate code that uses column-major or row-major array layout. Row-
major layout can improve performance for certain algorithms and ease integration with other code
that also uses row-major layout.

For more information, see Code Generation of Matrices and Arrays.
Model Configuration

To support row-major code generation, these are the new model configuration settings in the
Configuration Parameters dialog box.

Parameter Name Command-Line Name |Default Location

Array layout ArraylLayout Column-major Code Generation >
Interface

Use algorithms UseRowMajorAlgorit [Off Math and Data Types

optimized for row- hm

major array layout

(Simulink)

External functions UnsupportedSFcnMsg |error Code Generation >

compatibility for row- Interface

major code

generation

Default function DefaultCustomCodeF [Not specified Simulation Target

array layout (Simulink) [unctionArrayLayout

9-4

https://www.mathworks.com/help/releases/R2018b/rtw/ug/code-generation-of-matrix-data-and-arrays.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/array-layout.html
https://www.mathworks.com/help/releases/R2018b/simulink/gui/use-algorithms-optimized-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2018b/simulink/gui/use-algorithms-optimized-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2018b/simulink/gui/use-algorithms-optimized-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/external-functions-compatibility-for-row-major-code-generation.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/external-functions-compatibility-for-row-major-code-generation.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/external-functions-compatibility-for-row-major-code-generation.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/external-functions-compatibility-for-row-major-code-generation.html
https://www.mathworks.com/help/releases/R2018b/simulink/gui/default-function-array-layout.html
https://www.mathworks.com/help/releases/R2018b/simulink/gui/default-function-array-layout.html

Code Generation

To prepare your model for row-major code generation, set the model configuration parameter Array
layout to Row-major. You can also preserve array dimensions for parameters in the generated code.
For more details, see “Multi-Dimensional Arrays: Preserve array dimensions for parameters and
lookup tables in generated code” (Embedded Coder).

When Array layout is set to Row-major, the code generator uses algorithms to maintain consistency
of numeric results between simulation and the generated code. Sometimes, the generated code for
these algorithms can be inefficient. You can enable the Use algorithms optimized for row-major
array layout configuration parameter to enable efficient algorithms, which might result in numeric
differences between simulation and generated code. Use this configuration parameter to enable the
lookup table, sum, and product blocks for efficient row-major code generation. For more information
about lookup tables, see “Row-Major Array Layout: Simplify integration with external C/C++ code for
Lookup Table and other blocks”.

When you integrate your external C functions by using the C Caller block, you can specify the
Default function array layout configuration parameter to Row-major to enable row-major code
generation. For details about the C Caller block, see “C Caller Block: Call external C functions
directly from the model”.

If you have Embedded Coder, you can use Code Replacement Tool for creating row-major code
replacement table entries. For more information, see “Code Replacement: Optimize generated code
with SIMD and row-major order support and code replacement enhancements” (Embedded Coder).

For details about S-functions, see “Row-major code generation support for S-functions”.
Model Advisor Checks

In Embedded Coder, these Model Advisor checks have been added to support row-major code
generation:

+ Identify blocks generating inefficient algorithms (Embedded Coder) - A precompile check
enabled by default. This check flags the blocks that generate inefficient algorithms. To avoid
inefficient algorithms, enable the Use algorithms optimized for row-major array layout
configuration parameter.

* Check for blocks not supported for row-major code generation (Embedded Coder) - Flags
all blocks that are not supported for row-major code generation.

* Identify TLC S-Functions with unset array layout (Embedded Coder) - Flags all S-function
blocks that have SSArrayLayout set to SS_UNSET.

Miscellaneous Support

New TLC function LibIsRowMajor returns true when the current model uses the row-major array
layout.

New method getArrayLayout in Code Descriptor API returns the array layout of the generated
code.

Verification

You can verify the row-major generated code by using software-in-the-loop (SIL) and processor-in-the-
loop (PIL) simulations.

https://www.mathworks.com/help/releases/R2018b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_b4a5ebda-d6c4-4cad-9229-17adbb3361a6
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_db19a683-c67b-40c5-a3c0-40246d07baf2
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_2e6c7043-5e4b-4f19-b1ce-a10630115d38
https://www.mathworks.com/help/releases/R2018b/rtw/tlc/other-useful-functions.html#mw_df8a7451-bc8a-44d4-97ae-b52f0bceca89
https://www.mathworks.com/help/releases/R2018b/rtw/ref/coder.codedescriptor.getarraylayout.html

R2018b

9-6

Limitations

In R2018b, row-major code generation is not supported for any of the toolboxes. For complete list of
blocks unsupported for row-major code generation, see Unsupported Blocks for Row-Major Code
Generation.

Hardware Implementation Parameters: ProdHWDeviceType and
TargetHWDeviceType are case-insensitive

In R2018b, the values for the ProdHWDeviceType and TargetHWDeviceType command-line
parameters are case-insensitive. For example, these commands specify the same value for
ProdHWDeviceType:

* set param(modelOrConfigurationSet, 'ProdHWDeviceType', 'atmel->avr')

* set param(modelOrConfigurationSet, 'ProdHWDeviceType', 'Atmel->AVR')

https://www.mathworks.com/help/releases/R2018b/rtw/ug/code-generation-of-matrix-data-and-arrays.html#mw_9b93a377-da54-49a3-ac68-d891722f0a04
https://www.mathworks.com/help/releases/R2018b/rtw/ug/code-generation-of-matrix-data-and-arrays.html#mw_9b93a377-da54-49a3-ac68-d891722f0a04

Deployment

Deployment

XCP External Mode Simulation: Animate Stateflow charts and run pure
integer code

XCP external mode simulations support uploading DWork data during model execution, which enables
you to:

* Animate Stateflow charts.
* View state activity through the Simulation Data Inspector.

For more information, see:

* Animate Stateflow Charts (Stateflow)
* View State Activity by Using the Simulation Data Inspector (Stateflow)

You can run XCP external mode simulations with code that is generated for target hardware that does
not support floating-point arithmetic, that is, code generated with PurelyIntegerCode setto 'on'.

If PurelyIntegerCodeis set to 'on', you must also specify FixedStep with a resolution that is
greater or equal to 1 microsecond. For example, you can specify 1.000001, but not 1.0000001.

For more information, see:

* Support: floating-point numbers
* XCP External Mode Limitations

ST Nucleo Tuning and Monitoring: Perform external mode simulation
on ST Nucleo for parameter tuning and signal monitoring by using
XCP over TCP/IP or UART (Serial)

The Simulink Coder Support Package for STMicroelectronics® Nucleo Boards supports external mode
simulation for parameter tuning and signal monitoring using Universal Measurement and Calibration
Protocol (XCP) over TCP/IP or UART as the transport layer. XCP-based external mode enables signal
monitoring using Simulation Data Inspector and Dashboard blocks.

STMicroelectronics Nucleo Boards: Support for TCP/IP and UDP Blocks

The Simulink Coder Support Package for STMicroelectronics Nucleo Boards supports TCP/IP and
UDP blocks. For more information, see TCP Receive, TCP Send, UDP Receive, and UDP Send.

Build Process: Library and header files for model reference hierarchy
are not copied

Previously, the build process copied:

* Model reference library files to the build folder for the parent model

* Model reference header files to the referenced model includes subfolder of the build folder
for the parent model.

https://www.mathworks.com/help/releases/R2018b/stateflow/ug/animate-stateflow-charts.html
https://www.mathworks.com/help/releases/R2018b/stateflow/ug/view-state-activity-using-simulation-data-inspector.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/support-floating-point-numbers.html
https://www.mathworks.com/help/releases/R2018b/rtw/ug/external-mode-simulation-with-xcp-communication.html#mw_562fab5d-0c62-4f20-bfc7-251542f1deb1
https://www.mathworks.com/help/releases/R2018b/supportpkg/nucleo/ref/tcpreceive.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/nucleo/ref/tcpsend.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/nucleo/ref/udpreceive.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/nucleo/ref/udpsend.html

R2018b

9-8

In R2018D, the build process does not copy model reference library or header files. The build process
creates a response file for the header file paths.

If you want the build process to copy model reference header files to the .../parentModel/
referenced model includes subfolder, set these new custom toolchain attributes to true:

* NoCompilerCommandFile
* CopyReferencedModelHeaders

For more information, see addAttribute.

The build argument MODELREF LINK LIBS is not supported. For example, the getBuildArgs
function does not extract the MODELREF LINK LIBS argument identifier and value from a build
information object.

The MODELREF _LINK LIBS template makefile (TMF) token is still supported.

If you run a MATLAB script that uses the getBuildArgs function to extract an argument identifier
and value for MODELREF _LINK LIBS, the script might fail.

Build Process: MATLAB_INCLUDES is not required in custom template
makefiles

The MATLAB_INCLUDES macro is not required in custom template makefiles. In R2018b, the build
process extracts the required include paths from a build information object. You do not have to
remove the macro from existing template makefiles.

Simulink Coder Support Package for VEX EDR V5 Robot Brain:
Generate, build, and deploy Simulink models on VEX EDR V5 Robot
Brain

The Simulink Coder Support Package for VEX® EDR V5 Robot Brain is available from release R2018b
onwards. You can use the support package to generate, build, and deploy Simulink models on the VEX
EDR V5 Robot Brain.

The support package includes a library of Simulink blocks for programming the VEX EDR V5 Robot

Brain to work with sensors (analog and digital), actuators (V5 Smart Motor, DC motor, and Servo
motor), and gamepad inputs (from the VEX V5 Controller).

Support for BeagleBone Blue hardware available on Mac 0S

You can use the Simulink Coder Support Package for BeagleBone Blue Hardware on Mac OS.

Extended list of blocks in BeagleBone Blue support package

The Simulink Coder Support Package for BeagleBone Blue Hardware is enhanced to support these
additional blocks in the Actuators, Basic, Communication, and Video libraries of the support package.

https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.make.toolchaininfo.addattribute.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/getbuildargs.html

Deployment

Library

Block

Usage

Actuators

Servo Motor

Sets the shaft position of a
standard servo motor that is
connected to the hardware. The
position can vary from 0 to 180
degrees.

Basic

Analog Input

Measures the voltage of the
analog input pin relative to the
analog reference voltage (1.8
volts) on the hardware. If the
measured voltage equals the
ground voltage, the block
outputs 0. If the measured
voltage equals the analog
reference voltage, the block
outputs 1023.

Digital Read

Reads the logical value of a
digital input pin on the
hardware. If the logical value of
the digital pin is LOW (0 volts),
the block outputs 0. If the
logical value of the digital pin is
HIGH (3.3 volts), the block
outputs 1.

Digital Write

Sets the logical value of a digital
output pin on the hardware. An
input of 1 sets the logical value
of the digital pin HIGH to 3.3
volts. An input of 0 sets the
logical value of the digital pin
LOW to 0 volts.

PWM

Generates square waves on the
specified analog output pin. The
input value controls the duty
cycle of the waveform. An input
of @ produce waves with 0%
duty cycle. An input of 255
produce waves with 100% duty
cycle.

Communication

I12C Master Read

Reads data from an I2C slave
device or an I2C slave device
register connected to the
hardware.

I12C Master Write

Writes data to an I2C slave
device or an I2C slave device
register connected to the
hardware.

9-9

R2018b

9-10

Library

Block

Usage

SPI Master Transfer

Writes data to and reads data
from a slave device connected
to the hardware over the serial
peripheral interface (SPI).

SPI Register Read

Reads data from registers of a
slave device over the SPIL.

SPI Register Write

Writes data to registers of a
slave device over the SPI.

Video

SDL Video Display

Displays video data using the
Simple DirectMedia Layer (SDL)
multimedia library. The block
accepts video data in YCbhCr
4:2:2 and RGB formats.

V41.2 Video Capture

Captures video from USB
cameras that are supported by
the Video for Linux Two (V4L2)
API driver framework. The
camera must be Universal Video
Class (UVC) compatible.

Performance

Performance

Faster generated code for matrix operations in the MATLAB Function
block

To improve the simulation speed of MATLAB Function block algorithms that perform certain low-level
vector and matrix computations (such as matrix multiplication), the simulation software can call
BLAS functions. In R2018b, if you use Simulink Coder to generate C/C++ code for these algorithms,
you can specify that the code generator produce BLAS function calls. If you specify that you want to
generate BLAS function calls and the input arrays for the matrix operations meet certain criteria, the
code generator produces calls to relevant BLAS functions. The code generator uses the CBLAS C
interface.

BLAS is a software library for numeric computation of basic vector and matrix operations that has
several highly optimized machine-specific implementations. MATLAB uses this library for basic matrix
computations. Simulink uses the BLAS library that is included with MATLAB. Simulink Coder uses the
BLAS library that you specify. If you do not specify a BLAS library, the code generator produces code
for the matrix operation instead of generating a BLAS call.

To specify that you want to generate BLAS function calls and link to a specific BLAS library, see
Speed Up Matrix Operations in Code Generated from a MATLAB Function Block.

9-11

https://www.netlib.org/blas/
https://www.netlib.org/blas/#_cblas
https://www.mathworks.com/help/releases/R2018b/rtw/ug/speed-up-matrix-operations-in-code-generated-from-a-matlab-function-block.html

R2018b

Verification

9-12

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

9-13

https://www.mathworks.com/support/bugreports/

R2018a

Version: 8.14
New Features
Bug Fixes

Compatibility Considerations

R2018a

Model Architecture and Design

10-2

Protected Models: Use concurrent tasking

In R2018a, you can protect a model when you select the parameter Allow tasks to execute
concurrently on target (ConcurrentTasks). Concurrent tasking support includes simulation and
code generation for the protected model.

Model Advisor Check: Enhance check for blocks in your model that are
not supported by code generation

Model Advisor check Check for blocks not supported by code generation now analyzes content of
library linked blocks and content in all masked subsystems.

Configuration Reference in Data Dictionary: Quickly select code
generation target for model reference hierarchy

In R2018a, to select a code generation target for a model reference hierarchy without modifying the
individual models, use a configuration reference in the data dictionary.

In the data dictionary, create a configuration set for each of your code generation targets.

In the data dictionary, create a configuration reference.

For each model in the hierarchy, point the configuration reference to the configuration reference
in the data dictionary.

Once configured, switch the code generation target for your model reference hierarchy by selecting
the appropriate configuration set in the configuration reference that you created in the data
dictionary.

For more information, see Use Configuration Reference to Select Code Generation Target.

https://www.mathworks.com/help/releases/R2018a/simulink/gui/allow-tasks-to-execute-concurrently-on-target.html
https://www.mathworks.com/help/releases/R2018a/simulink/gui/allow-tasks-to-execute-concurrently-on-target.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/embedded-codersimulink-coder-checks.html#btpdhno-1
https://www.mathworks.com/help/releases/R2018a/rtw/ug/use-configref-to-select-codegen-target.html

Data, Function, and File Definition

Data, Function, and File Definition

SimulinkGlobal Name Change: Storage class renamed to Model default
In R2018a, the storage class SimulinkGlobal has a new name, Model default.

If you have Embedded Coder, you can control the meaning of Model default by configuring
settings in Code Mappings > Data Defaults. For more information, see Default Code
Configurations for Data and Functions: Apply default code generation configurations for categories of
model data and functions across a model (Embedded Coder).

Compatibility Considerations

Existing scripts that assign SimulinkGlobal to data items continue to work. Consider replacing
SimulinkGlobal with Model default.

Scripts that query the storage classes of data items and expect SimulinkGlobal now encounter
Model default instead. You must modify these scripts so they expect Model default.

Convert to Parameter Object: Apply storage classes to numeric
variables

Previously, when you inspected a numeric workspace variable in the Model Explorer or in the Model
Data Editor Parameters tab, you could not use the Storage Class column to apply a storage class.
In R2018a, the column offers a single option, Convert to parameter object, which converts the
variable to a parameter object such as Simulink.Parameter. After the conversion, you can use the
column again to apply a storage class. To convert many variables, you can take advantage of the
existing batch-editing abilities of the Model Explorer and the Model Data Editor.

For more information, see Apply Storage Class When Block Parameter Refers to Numeric MATLAB
Variable.

10-3

https://www.mathworks.com/help/releases/R2018a/ecoder/release-notes-R2018a.html#mw_1aa16cf8-59aa-4194-99a7-891cb4882141-02
https://www.mathworks.com/help/releases/R2018a/ecoder/release-notes-R2018a.html#mw_1aa16cf8-59aa-4194-99a7-891cb4882141-02
https://www.mathworks.com/help/releases/R2018a/ecoder/release-notes-R2018a.html#mw_1aa16cf8-59aa-4194-99a7-891cb4882141-02
https://www.mathworks.com/help/releases/R2018a/rtw/ug/use-parameter-objects-for-code-generation.html#mw_9861d0f9-2f61-46c0-8b44-86a68e775a79
https://www.mathworks.com/help/releases/R2018a/rtw/ug/use-parameter-objects-for-code-generation.html#mw_9861d0f9-2f61-46c0-8b44-86a68e775a79

R2018a

Code Generation

10-4

Code Descriptor: Retrieve meta information about generated code by
using MATLAB API

You can use the code descriptor API once the code is generated to obtain meta-information about the
generated code. Use the code descriptor API to describe these items in the generated code:

* Data Interfaces: inports, outports, parameters, and global data stores.

* Function Interfaces: initialize, output, update, and terminate.

* Run-time information of the data and function interfaces, such as timing requirements of each
interface entity.

* Model hierarchy information and code description of referenced models.

The function getCodeDescriptor takes a single argument modelName or buildDirectory and
returns the coder.codedescriptor.CodeDescriptor object.

The code descriptor API has these methods:

Name Description
getAllDataInterfaceTypes Returns all the data interface types.
getDataInterfaceTypes Returns all the data interface types in the

generated code.

getDatalnterfaces(datalnterface) Returns the properties of the specified data
interface. dataInterface can take any of the
values returned by
getAllDataInterfaceTypes.

getAllFunctionInterfaceTypes Returns all the function interface types.

getFunctionInterfaceTypes Returns all the function interface types in the
generated code.

getFunctionInterfaces(functionInterfac|Returns the properties of the specified function
e) interface. functionInterface can take any of
the values returned by
getAllFunctionInterfaceTypes.

getReferencedModelNames Returns the names of the referenced models.

getReferencedModelCodeDescriptor (refMo|Returns the code descriptor object for the
delName) referenced model specified in refModelName.

For more information, see Get Code Description of Generated Code.

Code Generation Advisor: Updates to parameter recommendations for
objectives

In R2018a, when the Code Generation Advisor checks your model configuration settings against
execution efficiency objectives, it does not consider the parameter Reuse buffers of different sizes
and dimensions (DifferentSizesBufferReuse).

https://www.mathworks.com/help/releases/R2018a/rtw/ref/getcodedescriptor.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getalldatainterfacetypes.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getdatainterfacetypes.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getdatainterfaces.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getallfunctioninterfacetypes.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getfunctioninterfacetypes.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getfunctioninterfaces.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getfunctioninterfaces.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getreferencedmodelnames.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getreferencedmodelcodedescriptor.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/coder.codedescriptor.getreferencedmodelcodedescriptor.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/get-code-description.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/reuse-buffers-of-different-sizes-and-dimensions.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/reuse-buffers-of-different-sizes-and-dimensions.html

Code Generation

Code Obfuscation: Protect intellectual property by using rtwbuild

option

When you use the rtwbuild function, you can now specify whether to generate obfuscated C code.
Use the ObfuscateCode option. If true, the code generator produces obfuscated code that you can
share with third parties with reduced likelihood of compromising intellectual property.

Hardware Implementation Settings: Inaccurate values corrected

R2018a provides the correct values for these Hardware Implementation pane settings.

Instruments

R4

Device vendor Device type Device detail R2018a value Previous value
Texas C5000 Number of bits |16 32
Instruments per pointer

Texas C5000 Number of bits |16 32
Instruments per ptrdiff t

Texas TMS570 Cortex- [Byte ordering Big Endian Little Endian

When you open a saved model from a previous release, R2018a updates the incorrect values.

For more information, see Hardware Implementation Pane.

10-5

https://www.mathworks.com/help/releases/R2018a/rtw/ref/rtwbuild.html
https://www.mathworks.com/help/releases/R2018a/simulink/gui/hardware-implementation-pane.html

R2018a

Deployment

10-6

Build Process: Specify toolchain for template makefile

To build code generated from Simulink models, you can specify a process that uses a template
makefile that is associated with a toolchain.

You can still use the template makefile approach that you used with previous releases, that is, you can
use a template makefile build process that is not associated with a toolchain.

For more information, see Choose Build Approach and Configure Build Process.

External Mode Simulation: Use XCP communication protocol

Run external mode simulations where the communication between your development computer and
the target processor is based on XCP, the Universal Measurement and Calibration Protocol. R2018a
provides:

* An XCP slave communication stack for a range of target processors and transport layers, for
example, TCP/IP and SxI.

* An external mode XCP transport layer for your development computer, which supports:

* Parameter tuning.
* Signal monitoring through the Simulation Data Inspector, Dashboard blocks, and Scope blocks.

For more information, see:

* Host-Target Communication with External Mode Simulation
* External Mode Simulation with XCP Communication
* Customize XCP Slave Software

External Mode Simulation: EXT_MODE is not required in template
makefile

For external mode simulations that use the template makefile (TMF) approach to build model code,
the code generation option, EXT MODE, is not required in the template makefile.

If you currently use a custom template makefile, you can update the template makefile:

1 Specify a toolchain for the build process by adding the TOOLCHAIN NAME macro to the template
makefile.

2 Remove EXT_MODE statements from the template makefile.

When you run an external mode simulation, the build process uses the RTW.BuildInfo object to
specify the required transport layer source files in the generated makefile.

To specify target-specific source files for the transport layer, you must use addSourceFiles to add
the required files to the RTW.BuildInfo object.

You do not have to update your custom template makefile. You can continue to use your current
template makefile without the TOOLCHAIN NAME and EXT MODE changes.

https://www.mathworks.com/help/releases/R2018a/rtw/ug/program-builds.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/set-up-and-use-hosttarget-communication-channel.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/_mw_e3815663-2703-41c7-8837-a1c09fccf2fe.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/_mw_ac65c7b4-4fed-4cae-a3c6-18497f8b5d4f.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/addsourcefiles.html

Deployment

For more information, see:

* Create a Transport Layer for TCP/IP or Serial External Mode Communication
» Associate the Template Makefile with a Toolchain

* Customize Post-Code-Generation Build Processing

* Customize Build Process with STF make rtw hook File

* Customize Build Process with sl customization.m

Build Process Status for Parallel Builds: View and interact with build
process status for parallel builds of referenced model hierarchies

You can now view and interact with build process status for parallel builds through the Build
Process Status window. In the window, you see the status of referenced model builds, the elapsed
time for builds, and a Cancel button that you can use to end the build process without creating
incomplete build artifacts. For more information, see View Build Process Status.

BeagleBone Blue Support Package: Generate, build, and deploy
Simulink models on BeagleBone Blue hardware

The Simulink Coder Support Package for BeagleBone Blue Hardware is available from release
R2017b onwards. You can use the support package to generate, build, and deploy Simulink models on
the BeagleBone Blue hardware. You can also tune parameter values in the model and receive data
from the model when it is running on the hardware.

The block library of the BeagleBone Blue support package includes these blocks.

Block Usage

Button Read logical state of button

DC Motor Set power, direction, and stopping action of a DC
motor

Encoder Measure incremental position and direction of a
rotating motor

LED [luminate built-in LED

TCP/IP Receive Receive data over TCP/IP network from a remote
host

TCP/IP Send Send data over TCP/IP network to another
remote host

UDP Receive Receive UDP packets from another UDP host on
an Internet network

UDP Send Send UDP packets to another UDP host on
Internet network

10-7

https://www.mathworks.com/help/releases/R2018a/rtw/ug/creating-a-tcp-ip-transport-layer-for-external-communication.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/program-builds.html#mw_8d05ff1d-ff4d-431a-8aab-17bc7b087b08
https://www.mathworks.com/help/releases/R2018a/rtw/ug/customizing-post-code-generation-build-processing.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/customizing-the-target-build-process-with-the-stf-make-rtw-hook-file.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/customizing-the-target-build-process-with-sl-customization-m.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/reduce-build-time-for-referenced-models.html#mw_77d535d8-3380-487d-843c-286f9611f4b2

R2018a

Performance

Configuration Set: New location for optimization model configuration
parameters

Previously, in the Configuration Parameters dialog box, there were three optimization panes. In
R2018a, there is a single Optimization pane, and this pane is under Code Generation. This pane
now contains only parameters that apply to code generation. Parameters that apply only to simulation
have moved to either the new Math and Data Types pane or the Simulation Target pane. This
table shows the moved parameters and their locations in R2018a.

Parameter Pane

Default for underspecified data type Math and Data Types
Use division for fixed-point net slope computation Math and Data Types
Use floating-point multiplication to handle net slope |Math and Data Types
corrections

Application lifespan Math and Data Types
Implement logic signals as Boolean data (vs. double) |Math and Data Types
Evaluated application lifespan Math and Data Types
Block reduction Simulation Target
Compiler optimization level Simulation Target
Conditional input branch execution Simulation Target
Signal storage reuse Simulation Target
Verbose accelerator builds Simulation Target

For more information, see Performance and Optimization Pane.

10-8

https://www.mathworks.com/help/releases/R2018a/rtw/performance.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/optimization-pane-general.html

Verification

Verification

10-9

R2018a

Check bug reports for issues and fixes

10-10

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2017b

Version: 8.13
New Features
Bug Fixes

Compatibility Considerations

R2017b

Model Architecture and Design

11-2

C++ Functions: Generate C++ code from Simulink functions, including
functions that respond to initialize, reset, and terminate events

Generate C++ Code for Simulink functions

In R2014b, the code generator introduced C code generation support for Simulink Function and
Function Caller blocks. R2017b adds C++ code generation support for these blocks. Using the
blocks, you can:

» Define a function that can be invoked by a function caller.

* C(all a function to compute output.

» Save and restore a state from nonvolatile memory.

* Provide entry-point functions that respond to external reset events.

You can invoke a C function that the code generator produces from a Simulink Function block with
code generated from a Stateflow chart, but not for a C++ function. Due to current scope limitations
for generated C++ functions, you must invoke those functions with code generated from a Function
Caller block.

For more information, see Generate Code That Responds to Initialize, Reset, and Terminate Events
and the Simulink Function and Function Caller block reference pages.

Generate C++ Code for initialize, reset, and terminate events

In R2016Dh, the code generator introduced C code generation support for the blocks Initialize
Function, Reset Function, and Terminate Function. R2017b adds C++ code generation support for
these blocks. You can use these blocks to generate code that controls execution of a component in
response to initialize, reset, and terminate events. For example, use these blocks to generate code
that:

» Starts and stops an application component
* Calculates initial conditions

For more information, see Simulink Function Blocks and Code Generation and the Initialize Function,
Reset Function, and Terminate Function block reference pages.

https://www.mathworks.com/help/releases/R2017b/rtw/ug/generate-code-that-handles-initialize-reset-and-terminate-events.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/simulinkfunction.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/functioncaller.html
https://www.mathworks.com/help/releases/R2017b/rtw/ug/generate-code-for-a-model-with-simulink-functions.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/resetfunction.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/terminatefunction.html

Data, Function, and File Definition

Data, Function, and File Definition

Tunable Parameters: Tune parameters in model workspace

A storage class causes a parameter object to appear in the generated code as a global variable whose
value you can change during execution. For example, you can apply the storage class
ExportedGlobal to a Simulink.Parameter object. Before R2017b, you could not apply a storage
class other than Auto to parameter objects that you stored in a model workspace. In R2017b, you can
apply a storage class other than Auto. However, if you store an AUTOSAR.Parameter object in a
model workspace, the code generator ignores the storage class that you specify for the object.

A storage class yields a global variable (or some other global symbol such as a macro) in the
generated code, which means the variable can have only one definition in the code. However, in a
model reference hierarchy in Simulink, a parameter object in a model workspace can have the same
name as a different parameter object in the model workspace of another model. If these parameter
objects use storage classes other than Auto, when you attempt to generate code from the hierarchy,
the definitions of the corresponding global variables conflict, preventing code generation. In general,
you must make sure that each global symbol in a model hierarchy is unique.

Compatibility Considerations

Before R2017b, when you set the model configuration parameter Default parameter behavior to
Tunable, a variable or parameter object that you stored in a model workspace did not appear in the
generated code as a single, tunable entity that resides in memory (such as a field of the model P
structure). Instead, the code generator created a separate structure field for each block parameter
that used the variable or object. In R2017b, the code generator creates a single structure field for
each variable or parameter object.

When you generate code from a model that you created before R2017b, parameter diagnostics can
generate new warnings or errors. For example, if the model uses such a variable or object in an
expression that the code generator cannot preserve in the generated code, depending on the setting
for the model configuration parameter Detect loss of tunability, attempting to generate code from
the model can yield a new warning or error.

Virtual Buses Across Model Reference Boundaries: Check for large
numbers of function arguments caused by virtual buses

When a virtual bus signal with many bus elements enters or exits a referenced model, the entry-point
functions generated for the model (such as model step) exchange data through separate
arguments, one argument for each bus element that the model uses. In R2017b, you can use the new
Model Advisor check Check for large number of function arguments from virtual bus across
model reference boundary to identify such buses. To generate code that passes a structure pointer
instead of many individual arguments, click Update Models. Simulink then makes the target buses
nonvirtual by configuring Inport and Outport block parameters and inserting Signal Conversion
blocks as necessary.

11-3

R2017b

Code Generation

Configuration Parameters Dialog Box: View your model and code
generation configuration parameters in unified dialog box with search
capability

Previously, the Configuration Parameters dialog box contained two tabs: a tab for commonly used
parameters and a tab that provided a searchable list of all available parameters. In R2017b, the

Configuration Parameters dialog box combines these features in a unified dialog box with a search
capability.

* View commonly used parameters on a category pane. Access advanced category parameters on
the same pane.

* To quickly find a specific parameter in the dialog box, use the search tool.

* Right-click a parameter to get the parameter name to use in scripts, view parameter
dependencies, and navigate to parameter documentation.

For more information, see Configuration Parameters Dialog Box Overview (Simulink).

Compatibility Considerations

* In R2017b, advanced parameters that were previously available only on the All Parameters tab
can be found under the Advanced Parameters toggle of the relevant category pane. To access
this toggle, hover over the ellipsis at the bottom of the pane. Alternatively, to find an advanced
parameter, use the search tool at the top of the dialog box.

* Ifyouuseansl customization.m script to hide or disable parameters in the Configuration
Parameters dialog box, the script requires updates to widget ID's and callback registrations. For
example:

* In R2017a:
function sl customization(cm)
% Disable for standalone Configuration Parameters dialog box.
cm.addDlgPreOpenFcn('Simulink.ConfigSet',@disableRTWBrowseButton)
% Disable for Configuration Parameters dialog box
cm.addDlgPreOpenFcn('Simulink.RTWCC',@disableRTWBrowseButton)
end

function disableRTWBrowseButton(dialogH)

% Takes a cell array of widget Factory ID.
dialogH.disableWidgets({'Tag ConfigSet RTW Browse'})

end

* InR2017b:
function sl customization(cm)

% Disable for all Configuration Parameters dialog boxes
configset.dialog.Customizer.addCustomization(@disableRTWBrowseButton,cm);

end

function disableRTWBrowseButton(dialogH)

11-4

https://www.mathworks.com/help/releases/R2017b/simulink/gui/configuration-parameters-dialog-box-overview.html

Code Generation

% Takes a cell array of widget Factory ID.
dialogH.disableWidgets({'STF Browser'})

end

For more information on getting widget ID's and customizing the dialog box, see Disable and Hide
Dialog Box Controls (Simulink).

Simplified Build Folder Layout: Generate code for different hardware
settings in separate folders

Specify separate folders for generated code from models that are configured for different target
environments. Use the Simulink.fileGenControl option, CodeGenFolderStructure, or the
Simulink preference, Code generation folder structure.

If you use this approach, do not manually specify the folder and subfolder locations for simulation and
generated code files. Use the information that RTW.getBuildDir provides. Custom targets that do
not use location information from RTW.getBuildDir might not support this approach.You can obtain
the current value of CodeGenFolderStructure with this command:

Simulink.fileGenControl('get', 'CodeGenFolderstructure')
For more information, see:

* Manage Build Process Folders
* Simulink.fileGenControl

Warning Messages: Build process diagnostic warnings in Diagnostic
Viewer

Previously, build process diagnostic warnings were in the build log. These warnings are now in the
Diagnostic Viewer. This change increases the visibility of these warning messages.

Code Generation Advisor: Updates to parameter recommendations for
objectives

In R2017b, when the Code Generation Advisor checks your model configuration settings against code
generation objectives, these changes apply:

» For checks against safety precaution objectives, the Code Generation Advisor does not consider
the parameter Conditional input branch execution (ConditionallyExecuteInputs).

* For checks against ROM efficiency objectives, the Code Generation Advisor considers the
parameter Remove code that protects against division arithmetic exceptions
(NoFixptDivByZeroProtection).

* For checks against ROM and execution efficiency objectives, the Code Generation Advisor
considers the parameter Support long long (ProdLongLongMode).

11-5

https://www.mathworks.com/help/releases/R2017b/simulink/ug/disabling-and-hiding-dialog-box-controls.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/disabling-and-hiding-dialog-box-controls.html
https://www.mathworks.com/help/releases/R2017b/rtw/ref/rtw.getbuilddir.html
https://www.mathworks.com/help/releases/R2017b/rtw/ug/build-process-folders-.html
https://www.mathworks.com/help/releases/R2017b/rtw/ref/simulink.filegencontrol.html
https://www.mathworks.com/help/releases/R2017b/simulink/gui/conditional-input-branch-execution.html
https://www.mathworks.com/help/releases/R2017b/simulink/gui/remove-code-that-protects-against-division-arithmetic-exceptions.html
https://www.mathworks.com/help/releases/R2017b/simulink/gui/hardware-implementation-pane.html#btwrypw-1

R2017b

Performance

11-6

Fast Fourier Transforms in a MATLAB Function Block: Generate code
that takes advantage of the FFTW library

In previous releases, when you generated code for FFT functions (fft, fft2, fftn, ifft, ifft2,
and ifftn) in a MATLAB Function block, the code generator produced code for the FFT algorithms.

In R2017h, to improve the execution speed of code generated for FFT functions, the code generator
can produce calls to an FFT library. To generate calls to a specific, installed FFTW library, provide an
FFT library callback class. See Speed Up Fast Fourier Transforms in Code Generated from a MATLAB
Function Block.

For more information about the FFTW library, see www.fftw.org.

https://www.mathworks.com/help/releases/R2017b/matlab/ref/fft.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/fft2.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/fftn.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/ifft.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/ifft2.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/ifftn.html
https://www.mathworks.com/help/releases/R2017b/rtw/ug/speed-up-fast-fourier-transforms-in-code-generated-from-a-matlab-function-block.html
https://www.mathworks.com/help/releases/R2017b/rtw/ug/speed-up-fast-fourier-transforms-in-code-generated-from-a-matlab-function-block.html
https://www.fftw.org

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

11-7

https://www.mathworks.com/support/bugreports/

R2017a

Version: 8.12
New Features

Bug Fixes

R2017a

Model Architecture and Design

12-2

Subsystem Reuse Across Models: Reuse subsystems with naming
control and global Data Store Memory blocks across models

In R2017a, the code generator can generate reusable code for the following modeling patterns:

* Subsystems across model reference boundaries that contain Data Store blocks that read from or
write to a global data store. In the Data Store Block Parameters dialog box, you specify a global
data store for the Data store name parameter. You define the global data store in the base
workspace using a signal object.

* Reusable functions that have user-specified names. In the Subsystem Block Parameters dialog
box, on the Code Generation tab, you specify a name by selecting User specified for the
Function name options parameter and providing a name for the Function name parameter.
The code generator no longer appends the user-specified name with a checksum.

The reusable code is in the shared utilities folder (slprj/)target/ sharedutils. Generating
reusable code conserves ROM consumption and improves code execution speed. See Subsystems.

TMF and EXTMODE fields optional in TLC file

In R2017a, if you do not specify the TMF or EXTMODE fields in a system target TLC file, the file is still
valid. To change the values for the parameters Template makefile (TemplateMakefile) and
External mode (ExtMode), you can instead use the callback function specified by
rtwgensettings.SelectCallback.

For more information, see Customize System Target Files.

https://www.mathworks.com/help/releases/R2017a/rtw/subsystems.html
https://www.mathworks.com/help/releases/R2017a/rtw/ug/customizing-system-target-files.html

Data, Function, and File Definition

Data, Function, and File Definition

Association of root-level Outport block with Simulink.Signal object
Before R2017a, you could not associate a root-level Outport block with a Simulink.Signal object.

In R2017a, you can use the Model Data Editor (see Configure Data Properties by Using a Table) to
make this association.

MAT-file logging for root-level Outport blocks with storage class other
than Auto

Before R2017a, when you used the Model Data Editor to apply a storage class or custom storage
class other than Auto to a root-level Outport block, MAT-file logging (Configuration Parameters >
MAT-file logging) did not support the Outport block.

In R2017a, MAT-file logging supports the Outport block unless the storage class is
ImportedExternPointer or yields nonaddressable data in the generated code. For example, the
custom storage class GetSet causes the Outport to appear in the generated code as a function call,
which is not addressable.

Model Explorer accessibility for code generation settings of lookup
table and breakpoint objects

Before R2017a, in the Model Explorer Contents pane, you were not able to access some code
generation settings (properties) of Simulink.LookupTable and Simulink.Breakpoint objects,
including:

* StorageClass

* HeaderFile (for the variable that appears in the generated code)

* HeaderFileName (for the structure type that appears in the generated code)

* DefinitionFile

+ Alignment

* SupportTunableSize

Except for SupportTunableSize, these properties belong to the Simulink.CoderInfo and
Simulink.lookuptable.StructTypeInfo objects that reside in the CoderInfo and
StructTypeInfo properties of the lookup table or breakpoint object.

In R2017a, you can inspect and modify these code generation settings in the Model Explorer
Contents pane.

12-3

https://www.mathworks.com/help/releases/R2017a/simulink/ug/inspect-and-configure-design-attributes-of-model-data.html

R2017a

Code Generation

12-4

Build Process Customization for S-Functions: Customize generated
makefiles with RTW.Buildinfo functions in makecfg.m

To customize generated makefiles for S-functions, create makecfg.m and
yourSFunction makecfg.m files that use RTW.BuildInfo functions to specify:

* Additional source files and libraries
* Preprocessor macro definitions
* Compiler flags

For more information, see:

* Use makecfg to Customize Generated Makefiles for S-Functions
* Import Calls to External Code into Generated Code with Legacy Code Tool

Source file includes shared utility header file

In R2016b, the model . h file or the subsystem. h file contained the #include command for the
header file that contained declarations for shared utility functions. In R2017a, the source file contains
the #include command for this header file. Including the header file in the source file reduces
compilation time and improves code readability because the model. c file or the subsystem. c file
uses the shared utility functions. The model. h file or the subsystem.h file does not use the shared
utility functions.

Generated code for Rate Transition block variables with volatile
qualifier

In R2016Dh, for Rate Transition blocks, when you selected the Ensure data integrity during data
transfer parameter and cleared the Ensure deterministic data transfer (maximum delay)
parameter, some compilers performed optimizations that removed or reordered protection logic,
which caused data integrity issues. Protection logic is particularly important for safety-critical system
deployment. To avoid potential issues, users had to turn off compiler optimizations.

In R2017a, the generated code contains the volatile qualifier in variables in the D_Work structure.
This qualifier indicates to most compilers not to perform optimizations that remove or reorder
protection logic because the value of these variables can possibly change outside control or detection
of the program. The presence of the volatile qualifier means that users no longer have to turn off
compiler optimizations and sacrifice performance for safety.

For example, the model rtwdemo_ratetrans contains six Rate Transition blocks. In the block
parameters dialog boxes for IntegOnlyF2S and IntegOnlyS2F, the Ensure data integrity during
data transfer parameter is selected and the Ensure deterministic data transfer (maximum
delay) parameter is cleared.

https://www.mathworks.com/help/releases/R2017a/rtw/ug/use-makecfg-to-customize-generated-makefiles-for-s-functions.html
https://www.mathworks.com/help/releases/R2017a/rtw/ug/legacy-code-tool-code-insertion.html

Code Generation

Fen-Call
Generator

Copyright 1924-2012 The MathWaorks, Inc.

- - -
5 = D
O y— 34 Hint Out1 1 1
In1 1111 111 [[outd
DetAndintegF2s DetAndintegS2F
5 = @
2 y—» 34 Hinz Outz 1 2
In2 1111 111 [[out?
IntegOnlyF2S IntegOnlyS2F
5 - =
D e »in3 out3 » —1& »(3
In3 1111 111 [[m out3
MNoneF2S NoneS2F

- Algortihm

In R2016b, the rtwdemo_ratetrans. h file contained this code:

/* Block states (auto storage) for system '
typedef struct {

real T Integratorl DSTATE[20]; /*
real T Integrator2 DSTATE[20]; /*
real T Integrator3 DSTATE[20]; /* !
real T DetAndIntegS2F Buffer0[20]; /*

<Root>' */

<S1>/Integratorl' */
<S1>/Integrator2' */
<S1>/Integrator3' */
<Root>/DetAndIntegS2F' */

real T IntegOnlyS2F Buffer[40]; /* '<Root>/IntegOnlyS2F' */
real T IntegOnlyF2S Buffer0[20]; /* '<Root>/IntegOnlyF2S' */
uint32 T Algorithm ELAPS TI[2]; /* '<Root>/Algorithm' */
uint32 T Algorithm PREV T[2]; /* '<Root>/Algorithm' */
int8 T IntegOnlyS2F ActiveBufIdx; /* '<Root>/IntegOnlyS2F' */

int8 T IntegOnlyF2S semaphoreTaken; /* '<Root>/IntegOnlyF2S' */

} DW rtwdemo ratetrans T;

The Rate Transition block variables did not contain the volatile qualifier.

In R2017a, the rtwdemo_ratetrans.h file conta

ins this code:

/* Block states (auto storage) for system '<Root>' */

typedef struct {

real T Integratorl DSTATE[20]; /* '<S1>/Integratorl' */
real T Integrator2 DSTATE[20]; /* '<S1>/Integrator2' */
real T Integrator3 DSTATE[20]; /* '<S1>/Integrator3' */

real T DetAndIntegS2F Buffer0[20]; /*

'<Root>/DetAndIntegS2F' */

volatile real T IntegOnlyS2F Buffer[40];/* '<Root>/IntegOnlyS2F' */

volatile real T IntegOnlyF2S Buffer0[20];

uint32 T Algorithm ELAPS T[2]; /*
uint32 T Algorithm PREV T[2]; /*

;/* '<Root>/IntegOnlyF2S' */
'<Root>/Algorithm' */
'<Root>/Algorithm' */

volatile int8 T IntegOnlyS2F ActiveBufIdx;/* '<Root>/IntegOnlyS2F' */

12-5

R2017a

12-6

volatile int8 T IntegOnlyF2S semaphoreTaken;/* '<Root>/IntegOnlyF2S' */
} DW rtwdemo ratetrans T;

The variables corresponding to Rate Transition blocks that have the Ensure data integrity during
data transfer parameter selected and the Ensure deterministic data transfer (maximum delay)
parameter cleared contain the volatile qualifier. These variables have the IntegOnly comment.

IncludeMdITerminateFcn not checked against efficiency objectives

In R2017a, when the Code Generation Advisor checks your model configuration settings against code
generation efficiency objectives, it does not consider the parameter Terminate function required
(IncludeMd1TerminateFcn).

More information in code generation report summary

Additional fields in the code generation report Summary page provide information on your model
and the generated code, including:

* Author

* Last Modified By

+ Tasking Mode (except for exported models)

* System Target File

* Hardware Device Type

* Type of Build

* Code Generation Advisor (if you run Code Generation Advisor as part of the build process, it
provides link to Code Generation Advisor Report)

* Code Reuse Exception (if exceptions exist, it links to Subsystem Report)

For more information on code generation reports, see Reports for Code Generation.

https://www.mathworks.com/help/releases/R2017a/rtw/ref/terminate-function-required.html
https://www.mathworks.com/help/releases/R2017a/rtw/ug/reports-for-code-generation.html

Deployment

Deployment

NXP FRDM-K64F Board: Create models using Analog Output,
Quadrature Encoder, Serial, and UDP blocks

This table lists the support for these new blocks.

Block Usage

Analog Output Send an analog signal to DACO_OUT pin
Quadrature Encoder Measure the rotation of the encoder in ticks
Serial Receive Read data from the UART port

Serial Transmit Send data to the UART port

UDP Receive Receive UDP packets from another UDP host
UDP Send Send UDP packets to another UDP host

Support for new board STMicroelectronics Nucleo F746ZG

You can use the Simulink Coder Support Package for STMicroelectronics Nucleo Boards to generate
code for STMicroelectronics Nucleo F746ZG board.

You must install the Simulink Coder Support Package for STMicroelectronics Nucleo Boards to use
this support.
Support for new board STMicroelectronics Nucleo F411RE

You can use the Simulink Coder Support Package for STMicroelectronics Nucleo Boards to generate
code for STMicroelectronics Nucleo F411RE board.

You must install the Simulink Coder Support Package for STMicroelectronics Nucleo Boards to use
this support.

Gyroscope and LCD blocks added to ARM Cortex-based VEX
Microcontroller

This table lists the support for these new blocks.

Block Usage

Gyroscope Measure the yaw rotation in degrees
LCD Button Read the state of the selected button
LCD Screen Display text and numbers on the display

12-7

R2017a

Performance

12-8

Dynamic Memory Allocation for MATLAB Function Block: Generate C
code that uses dynamic memory allocation

In R2017a, simulation and C/C++ code generation support dynamic memory allocation for arrays in a
MATLAB Function block, a Stateflow chart, or a System object™ associated with a MATLAB System
block. Dynamic memory allocation allocates memory as needed at run time, instead of allocating
memory statically on the stack. Dynamic memory allocation is beneficial when:

* You do not know the upper bound of an array.
* You do not want to allocate memory on the stack for large arrays.

By default, dynamic memory allocation for MATLAB Function blocks is enabled for GRT-based targets
and disabled for ERT-based targets. To change the setting, in the Configuration Parameters dialog
box, on the All Parameters tab, in the Simulation Target > Advanced parameters category, clear
or select the Dynamic memory allocation in MATLAB Function blocks check box.

When dynamic memory allocation is enabled, the code generator uses dynamic memory allocation for
arrays whose size is equal to or greater than a threshold. The default value of this threshold is 64
kilobytes. To change the threshold, in the Configuration Parameters dialog box, on the All
Parameters tab, in the Simulation Target > Advanced parameters category, set the Dynamic
memory allocation threshold in MATLAB Function blocks parameter.

In the generated C/C++ code, the code generator represents dynamically allocated data as a
structure type called emxArray. The code generator produces utility functions that the generated
code uses to manage the emxArrays. If you have Embedded Coder, you can customize the identifiers
for emxArrays and the utility functions.

* To customize emxArray identifiers, use the EMX array types identifier format parameter in the
Simulation Target > Advanced parameters category of the All Parameters tab.

* To customize the utility function identifiers, use the EMX array utility functions identifier
format parameter in the Simulation Target > Advanced parameters category of the All
Parameters tab.

Dynamic memory allocation does not apply to:

* Input and output signals. Variable-size input and output signals must have an upper bound.
* Parameters or global variables. Parameters and global variables must be fixed-size.

» Fields of bus arrays. Bus arrays cannot have variable-size fields.

» Discrete state properties of System objects associated with a MATLAB System block.

See Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block.

https://www.mathworks.com/help/releases/R2017a/rtw/ug/control-memory-allocation-for-variable-size-arrays-in-a-matlab-function-block.html

12-9

R2017a

Check bug reports for issues and fixes

12-10

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2016b

Version: 8.11
New Features
Bug Fixes

Compatibility Considerations

R2016b

Model Architecture and Design

13-2

Initialize Function and Terminate Function Blocks: Generate code for
initialize, reset, and terminate events

R2016b introduces the blocks Initialize Function and Terminate Function. You can use these blocks to
generate code that controls execution of a component in response to initialize, reset, or terminate
events. For example, use them to generate code that:

» Starts and stops an application component.

* Calculates initial conditions.

» Saves and restores state from nonvolatile memory.

* Provides entry-point functions that respond to external reset events.

For more information, see Generate Code That Responds to Initialize, Reset, and Terminate Events
and descriptions of the Initialize Function and Terminate Function blocks.

State Reader and State Writer Blocks: Generate code that reads or
writes state values to set terminal or initial conditions

R2016b introduces State Reader and State Writer blocks. Use these blocks with the new Initialize
Function and Terminate Function blocks to generate code that controls execution of a component in
response to initialize, reset, or terminate events.

By default, the Initialize Function block includes a State Writer block. The Terminate Function block
includes a State Reader block. Set up the State Writer block or the State Reader block to write the
state to or read the state from a given state owner block in your model or subsystem. When the
function is triggered, the value of the state variable is read from or written to the specified block. The
code generator uses unique state names configured for the blocks to identify the reusable function
code for a given read or write operation.

Supported state owner blocks include:

* Delay

* Discrete Filter

* Discrete State-Space

* Discrete-Time Integrator

* Discrete Transfer Fcn

* Discrete Zero-Pole

* S-Function

» Trigger

* Unit Delay

For more information, see Generate Code That Responds to Initialize, Reset, and Terminate Events

and descriptions of the Initialize Function, Terminate Function, Event Listener, State Reader, and
State Writer blocks.

https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/generate-code-that-handles-initialize-reset-and-terminate-events.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/statereader.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/statewriter.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/generate-code-that-handles-initialize-reset-and-terminate-events.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/eventlistener.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/statereader.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/statewriter.html

Model Architecture and Design

Updates to protected model message identifiers

In R2016b, protected model error message identifiers have been updated.

Compatibility Considerations

If you have protected model code, such as a switch expression, that depends on specific protected
model error message identifiers, update this code with the new identifiers.

13-3

R2016b

Data, Function, and File Definition

13-4

Name and Storage Class for Outport: Configure name and storage
class for code generation directly on root-level Outport blocks

At the root level of a model, Outport blocks represent outputs that other systems can consume as
inputs. Prior to R2016Db, to configure code generation for an Outport block, you could not apply a
name or storage class directly to the block. Instead, you applied a name and storage class to the
signal line that entered the block. Optimizations eliminated the Outport block from the generated
code, instead allocating memory for the signal line.

In R2016b, use the Model Data Editor (see “Model Data Editor for applying storage classes to Inport
blocks, Outport blocks, signals, and Data Store Memory blocks” on page 13-6) to apply a name and
storage class directly to an Outport block. You can now:

* Configure system inputs and outputs (Inport and Outport blocks) before you develop the internal
algorithm of the system.

» Store the name and storage class specifications in the block. When you delete the signal line that
enters the block, you do not lose these specifications.

» Distribute a single signal value to multiple system outputs by branching a signal line to multiple
Outport blocks.

To programmatically apply storage classes to Outport blocks, use the new parameters SignalName,
StorageClass, and SignalObject.

ASAP2 file generation for bus signals and parameters

R2016b enhances ASAP2 file generation to support bus signals and bus parameters. The following
model structures now can be exported as measurements and characteristics and used with ASAP2
based tools to calibrate models:

* Bus type signals and discrete states that are associated with Simulink.Signal or mpt.Signal
derived objects with compatible storage classes

* Bus type test points

* Nested buses and structures for nonlookup parameters

* Nested buses for signals and test points

* Arrays of buses for signals and test points

With nested structure support, you can structure parameters and access each field for calibration.
You also can calibrate model reference parameters that are stored in structures.

ASAP? file generation for nested structures involves additional post-code generation steps, which
require:

* A compiler that generates elf files

* A readelf utility

* Compiling with the debug option

Data, Function, and File Definition

Compatibility Considerations

To support ASAP?2 file generation with nested structures, R2016b requires additional post-code
generation steps. Also, if you modified a version of the ASAP2 user template asap2scalar.tlc from
a previous release, R2016b requires minor API and algorithm revisions.

Perform additional steps after code generation for nested structures

C code generation generates model bus parameters and bus signals in variables with nested
structures. A map file is not sufficient to retrieve the address of individual fields for each signal or
parameter. ASAP2 file generation now uses DWARF debug information to collect structure layout
information and emit correct addresses in the a21 file. The procedure requires a readelf utility.

To calibrate nested structures, perform the following extra steps after code generation.

1 Create a dwarf file. Execute the following command in the MATLAB Command Window.

>> lreadelf -wi model.elf > model.dwarf;

2 Ifyou generated code for referenced models, each model reference build generates an a2 file.
Merge the files using the rtw.asap2MergeMd1Refs function.

>> rtw.asap2MergeMdlRefs('topmodel', 'merged.a2l');
3 To add addresses to the a2l file, use the rtw.asap2SetAddress function.

>> rtw.asap2SetAddress('model.a2l"', 'model.dwarf');

The extra steps can be integrated into an automated build process. Step 1, dwarf file creation, can
be included in a template makefile or build tool integration file, following the link command that
generates the el f file. Alternatively, Step 1 can be included in a post-code generation command.

Steps 2 and 3 can be integrated in a build process hook method in an STF_make rtw_hook file. For
example:

function ert make rtw hook(hookMethod,modelName, rtwroot, templateMakefile,buildOpts,buildArgs,buildInfo)
% ert make rtw hook - Sample hook file to automate A2L merge and address population

o°

switch hookMethod

case 'after make'
% Called after make process is complete.

% Merge A2L files for model reference.
mergea2l(modelName,buildInfo);

end
end

function mergea2l(modelName,buildInfo)

% Merge the A2L files

When using model reference, an A2L file is created for each model.
Merge them into one file.

o° o°

mdlRefTargetType = get param(modelName, 'ModelReferenceTargetType');
isNotModelRefTarget = strcmp(mdlRefTargetType, 'NONE');

if strcmp(get param(modelName, 'GenerateASAP2'),'on")
if isNotModelRefTarget
if ~isempty(buildInfo.ModelRefs)
rtw.asap2MergeMdlRefs (modelName, [modelName '.a2l']);
end
rtw.asap2SetAddress([modelName '.a2l'], [modelName '.dwarf']);
end

13-5

R2016b

13-6

end

end
Revise ASAP2 user template for nested structures

ASAP? file generation of bus signals and bus parameters can result in nested C structures and a
generated ECU address with multiple levels of nesting. Changes have been made to the ASAP2 user
template asap2scalar. tlc, which is used to customize how CHARACTERISTICs are emitted in the
a2l file. If you modified a version of this template from a previous release, incorporate minor
revisions to an API and an algorithm in your template.

* APIrevision — The function ASAP2UserFcnWriteStructCharacteristic Scalar has added
a parentName parameter.

%sfunction ASAP2UserFcnWriteStructCharacteristic Scalar(param, parentName) Output

parentName passes the name of the enclosing structure. When using library functions
LibASAP2GetSymbolForBusElement and LibASAP2GetAddressForBusElement to access the
symbol and address of the CHARACTERISTIC, reference the new parameter.

%assign characteristicName = LibASAP2GetSymbolForBusElement(data,busIdx,"",parentName)
%assign characteristicAddress = LibASAP2GetAddressForBusElement(data,busIdx,"", parentName)

The third parameter, datalIdx, is omitted, because ASAP2 file generation does not support arrays
of busses in CHARACTERISTICs.

* Algorithm revision — In templates from previous releases, you could not recurse inside a structure
to add CHARACTERISTICs for nested structures. The following line in the template guarded
against recursion:

%if !LibIsStructDataType(dtId)

You can now add the following code to support recursion. Insert the code immediately before the
closing %sendif statement.

oP

el

]

o o 1

% Write out CHARACTERISTIC for child structure
<ASAP2UserFcnWriteStructCharacteristic Scalar(data.StructInfo.BusElement[busIdx], parentGrpName)>

Model Data Editor for applying storage classes to Inport blocks,
Outport blocks, signals, and Data Store Memory blocks

To control the representation of individual signals and Data Store Memory blocks in the generated
code, you apply storage classes and custom storage classes. The signals and data stores appear in the
generated code as global data that you can access through your custom code.

In R2016bh, you can use the Model Data Editor to apply storage classes to these data items. You can
view and edit the items in a list that you can sort, group, and filter. Use this technique to inspect and
configure the data interface of your model at a high level.

For more information about the Model Data Editor, see Model Data Editor: Configure model data
properties using a table within the Simulink Editor. For an example, see Design Data Interface by
Configuring Inport and Outport Blocks.

https://www.mathworks.com/help/releases/R2016b/simulink/release-notes.html#bvcwdbe-2
https://www.mathworks.com/help/releases/R2016b/simulink/release-notes.html#bvcwdbe-2
https://www.mathworks.com/help/releases/R2016b/rtw/ug/configure-data-interface-by-applying-storage-classes-to-inport-and-outport-blocks.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/configure-data-interface-by-applying-storage-classes-to-inport-and-outport-blocks.html

Data, Function, and File Definition

Storage of lookup tables for calibration according to ASAP2 and
AUTOSAR standards

Use the new classes Simulink.LookupTable and Simulink.Breakpoint to store table and
breakpoint set data in Simulink. If you have Embedded Coder, use these classes to prepare the data
for calibration by packaging it in the generated code according to the ASAP2 (STD AXIS or
COM_AXIS) and AUTOSAR (for example, CURVE or MAP) standards:

» For STD_AXIS, store all of the data in a single Simulink.LookupTable object. Use the object in
an n-D Lookup Table block.

The data appear in the generated code as fields of a single structure. To control the
characteristics of the structure type, such as its name, use the properties of the object.

* For COM_AXIS, store each unique set of table data in a Simulink.LookupTable object and each
unique breakpoint vector in a Simulink.Breakpoint object. Use each
Simulink.LookupTab'le object in an Interpolation Using Prelookup block and each
Simulink.Breakpoint object in a Prelookup block. You can reduce memory consumption by
sharing breakpoint data between lookup tables.

Each set of table data appears in the generated code as a separate variable. Each breakpoint
vector appears as an array or, optionally, as a structure with one field to store the breakpoint data
and one field to store the length of the vector. The second field enables you to tune the effective
size of the table.

You use these classes in approximately the same way that you use the Simulink.Parameter class.
For example, you can apply storage classes and custom storage classes. However, you can use these
classes only in lookup table blocks.

Tunable Table Size

Prior to R2016Db, to tune the effective size of the table in the generated code, in an n-D Lookup Table
block, you selected the parameter Support tunable table size in code generation. When you used
Prelookup and Interpolation Using Prelookup blocks, you could not enable a tunable table size.

In R2016b, you can enable a tunable table size by using the properties of Simulink.LookupTable
and Simulink.Breakpoint objects. Therefore, you can enable a tunable table size whether you use
n-D Lookup Table blocks or Prelookup and Interpolation Using Prelookup blocks.

Calibration

To store lookup table data for calibration according to the ASAP2 or AUTOSAR standards (for
example, STD AXIS, COM_AXIS, or CURVE), you can use Simulink.LookupTable and
Simulink.Breakpoint objects. However, some limitations apply. See Simulink.LookupTable.

More explicit purpose for SimulinkGlobal storage class

Before R2016b, applying the storage class SimulinkGlobal to a signal achieved the same effect as
configuring the signal as a test point and applying the default storage class, Auto. For example:

» Ifyou configured multiple signals to use the same name and to use SimulinkGlobal, the code
generator mangled the name of each corresponding structure field to avoid identifier conflicts.

* The model configuration parameter Ignore test point signals (Embedded Coder) affected
signals that used SimulinkGlobal and test points.

13-7

https://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.lookuptable-class.html

R2016b

13-8

If you configured block states to use the same name and SimulinkGlobal, the code generator
mangled names. Data items that used SimulinkGlobal were sometimes subject to code generation
optimizations, which possibly removed the data from the code.

There was an overlap of purpose between SimulinkGlobal and test point signals due to their
similarity. The name mangling made it more difficult to access the data through your custom code.
For all kinds of data item, there was an overlap of purpose between SimulinkGlobal and Auto.

In R2016b, SimulinkGlobal represents an explicit specification, similar to other storage classes
such as ExportedGlobal.

Compatibility Considerations

You can no longer apply the same name to multiple signals or states that use SimulinkGlobal
because the code generator no longer mangles names. Specify a unique name for each signal and
state. Correct existing models that:

» Use the Signal Properties dialog box or block dialog boxes to apply the same name to multiple
signals or states that use SimulinkGlobal.

* Resolve multiple signal lines or block states to a single Simulink.Signal object that uses the
storage class SimulinkGlobal.

When you apply SimulinkGlobal to a data item, optimizations cannot eliminate the data from the
generated code. When you select Ignore test point signals, optimizations such as the model
configuration parameter Signal storage reuse do not eliminate signals that use SimulinkGlobal.

Additional tunability support for expressions

Previously, to maintain tunability of expressions in the generated code, the data type of workspace
variables such as MATLAB variables and Simulink.Parameter objects had to be of type double. In
R2016b, you can specify any data type for these variables and objects. If the data type of these
variables and objects and the data type of the corresponding block parameters are the same or a
combination of one data type and doub'le, the code generator can preserve tunability.

Previously, for blocks that accessed parameter data through pointer or reference in the generated
code, you could not specify a math expression that contained workspace variables or used a data type
that required an implicit data type conversion. In R2016b, you can specify a math expression or use a
data type that is different from the data type of the block parameter. In these cases, the code
generator creates an expression that is not addressable to perform the computation. This operation
requires a data copy. For large data sets, this data copy can potentially significantly increase RAM
consumption and slow down execution speed. For example, Lookup Table blocks often access large
vectors or matrices through pointer or reference in the generated code. For maximally efficient code,
match the data types of block parameters and workspace variables and specify parameter
expressions that are addressable. For example, the name of a single global variable or the field of a
structure is addressable.

For more information, see Block Parameter Representation in the Generated Code, Parameter Data
Types in the Generated Code, and Optimize Generated Code for Lookup Table Blocks.

https://www.mathworks.com/help/releases/R2016b/rtw/ug/parameters.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/generated-code-for-parameter-data-types.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/generated-code-for-parameter-data-types.html
https://www.mathworks.com/help/releases/R2016b/simulink/ug/tips-to-optimize-generated-code-for-lookup-table-blocks.html

Code Generation

Code Generation

Data Exchange Interface: Use independent controls to configure C
API, ASAP2, and external mode

Previously, the Simulink Configuration Parameters dialog box allowed you to select only one data
exchange interface for your model - C API, ASAP2, or external mode. Selecting a second data
exchange interface required using MATLAB set param commands, and the command-line selections
were not displayed in the Configuration Parameters dialog box.

In R2016b, the Code Generation > Interface pane provides separate configuration controls for
each data exchange interface. You can configure what your application requires and view the settings
together. For example, you can configure the ASAP2 and external mode data exchange interfaces
together.

Data exchange interface
Generate C API for:

signals parameters states root-level IfO

7| ASAPZ interface

¥| External mode
External mode configuration
Transport layer: tcpip - | MEX-file name: ext_comm
MEX-file arguments:

Static memory allocation

Standard math library changes
These changes apply to standard math library configurations:

* When you create a model or configuration set, the default standard math library setting is ISO/IEC
9899:1999 C (C99 (IS0)). Previously, the default standard math library was ISO/IEC 9899:1990
C (C89/C90 (ANSI)). If you are using a compiler that does not support ISO/IEC 9899:1999 C
(C99 (IS0)), setthe Standard math library (TargetLangStandard) parameter to C89/C90
(ANSTI).

* The build process checks whether the specified standard math library and toolchain are
compatible. If they are not compatible, a warning occurs during code generation and the build
process continues.

* When you change the value of the Language parameter, the standard math library updates to
ISO/IEC 9899:1999 C (C99 (IS0)) for C and ISO/IEC 14882:2003 C++ (C++03 (IS0)) for C++.
Previously, you adjusted the standard math library to match your programming language
selection.

For more information, see Configure Standard Math Library for Target System and Standard math
library.

Compatibility Considerations

As of R2016D, if you create a model or open an existing model with a script that creates a
configuration set without setting the standard math library parameter TargetLangStandard

13-9

https://www.mathworks.com/help/releases/R2016b/rtw/ug/change-the-standard-math-library.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/standard-math-library.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/standard-math-library.html

R2016b

13-10

explicitly, the parameter defaults to ISO/IEC 9899:1999 C (C99 (ISO0)). If the specified toolchain is
not compatible with that standard math library, a warning occurs during code generation and the
build process continues. To avoid the warning, set TargetLangStandard to a standard math library
that is compatible with your toolchain.

For more information, see Standard math library and Toolchain.

SupportVariableSizeSignals not checked against efficiency objectives

In R2016b, when the Code Generation Advisor checks your model configuration settings against code
generation efficiency objectives, it does not consider the parameter Support: variable-size signals
(SupportVariableSizeSignals).

Use default installation folder on Windows system with ReFS file
system

In previous releases, on Windows systems, the code generator relied on 8.3 name or short file name
generation to operate from the default installation folder (for example, C:\Program Files\MATLAB
\R2015b).

The Windows ReFS (Resilient File System) does not permit 8.3 name or short file name generation.
ReFS differs from Windows NTFS (New Technology File System), which-by default-provides short file
name support.

To support the default MATLAB installation folder on Windows systems with the ReFS file system or
when NTFS short file name support is disabled, the code generation software maps a drive
corresponding to the MATLAB installation folder.

For more information, see Enable Build Process When Folder Names Have Spaces.

https://www.mathworks.com/help/releases/R2016b/rtw/ref/standard-math-library.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/toolchain.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/support-variable-size-signals.html
https://en.wikipedia.org/wiki/ReFS
https://en.wikipedia.org/wiki/NTFS
https://www.mathworks.com/help/releases/R2016b/rtw/ug/enable-build-when-path-names-contain-spaces.html

Deployment

Deployment

Simulink Coder Target Support Packages: Generate code for NXP
Freedom boards and STMicroelectronics Nucleo boards

You can use the following new support packages to generate code for the NXP Freedom boards and
the STMicroelectronics Nucleo boards.

* Simulink Coder Support Package for NXP FRDM-KL25Z Board

* Simulink Coder Support Package for NXP FRDM-K64F Board.

* Simulink Coder Support Package for STMicroelectronics Nucleo Boards User Guide

Generate code for STMicroelectronics Nucleo boards

You can use the Simulink Coder Support Package for STMicroelectronics Nucleo Boards to generate
code for these STMicroelectronics Nucleo boards:

* STM32 Nucleo F031K6

* STM32 Nucleo F103RB

* STM32 Nucleo F302R8

* STM32 Nucleo F401RE

» STM32 Nucleo L053R8

* STM32 Nucleo L476RG

You can use processor-in-the-loop (PIL) execution to verify generated code that you deploy to all the
supported Nucleo boards (except NUCLEO-F031K6 due to memory constraint) with an Embedded
Coder license. By using PIL with hardware, you can more effectively generate code for your hardware
by profiling speed and algorithm performance.

Support for 12C and PWM blocks for FRDM-KL25Z board

You can use the I12C Master Read and 12C Master Write blocks from the Simulink Coder Support
Package for NXP™ FRDM-KL25Z Board library for reading and writing data from and to an I2C slave
device.

To generate square waveform on the specified output pin, use the PWM Output block from the library.

Support for new blocks for FRDM-K64F board

From the Simulink Coder Support Package for NXP FRDM-K64F Board block library, you can use the
following blocks.

* 12C Master Read and I2C Master Write blocks for reading and writing data from and to an I2C
slave device.
* Push Button block to read the logical state of a push button.

* FXO0S8700CQ 6-Axes Sensor block to measure linear acceleration and magnetic field along the X,
Y, and Z axes.

13-11

https://www.mathworks.com/help/releases/R2016b/supportpkg/freedomboard/index.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/freescalefrdmk64fboard/index.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/nucleo/index.html

R2016b

13-12

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

13-13

https://www.mathworks.com/support/bugreports/

R2016a

Version: 8.10
New Features
Bug Fixes

Compatibility Considerations

R2016a

Model Architecture and Design

14-2

Variants: Generate code for active variant choice as specified with
Variant Sink and Variant Source blocks

Previously, you used model variants and variant subsystems to make parts of a model conditional. In
R2016a, you can make parts of a model conditional without placing blocks inside variant subsystems
or model variants. A Variant Source block enables variant choices at the source of a signal. For the
Variant Source block, you can specify one or no active input port. A Variant Sink block enables variant
choices at the destination of a signal. For the Variant Sink block, you can specify one or no active
output port. During simulation, Simulink ignores blocks that connect to inactive ports.

When you generate code, you generate code for only the active variant choice. If you use Embedded
Coder, you can generate code with preprocessor conditionals that defer the choice of active variant
until compilation time. You can also generate preprocessor conditionals that allow for no active
variant choice.

If you use Embedded Coder, see Compile-Time Variants: Generate compiler directives (#if) for variant
choices specified with Variant Source and Variant Sink blocks and Represent Variant Source and Sink
Blocks in Generated Code for more information.

Protected Model Callbacks: Define callbacks for customized protected
models

Customize the behavior of your protected model by using protected model callbacks. You can specify
code to execute when a user views, simulates, or generates code for the protected model. If you are
using a protected model, you cannot view or modify a callback.

Callback objects specify:

* The code to execute for the callback. The code can be a string of MATLAB commands or a script
on the MATLAB path. The code can include protected model functions or any MATLAB command
that does not require loading the model. You can use the
Simulink.ProtectedModel.getCallbackInfo function in callback code to get information on
the protected model. The function provides the protected model name and the names of
submodels. If the callback is specified for ' CODEGEN' functionality and a 'Build’' event, the
function provides the target identifier and model code interface type (' Top model' or 'Model
reference').

* The event that triggers the callback. The event can be 'PreAccess' or 'Build".

* The protected model functionality that the event applies to. The functionality can be ' CODEGEN',
'SIM', 'VIEW', or 'AUTO'. If you select 'AUTO', and the event is 'PreAccess’, the callback is
applied to each functionality. If you select 'AUTO', and the event is 'Build’, the callback is
applied only to ' CODEGEN' functionality. If no functionality is selected, the default behavior is
"AUTO".

* The option to override the protected model build. This option applies only to ' CODEGEN'
functionality.

To create a protected model with callbacks:

1 Define Simulink.ProtectedModel.Callback objects for each callback.

https://www.mathworks.com/help/releases/R2016a/ecoder/release-notes.html#bu5a30o
https://www.mathworks.com/help/releases/R2016a/ecoder/release-notes.html#bu5a30o
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/represent-inline-variants-in-generated-code.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/represent-inline-variants-in-generated-code.html
https://www.mathworks.com/help/releases/R2016a/rtw/ref/simulink.protectedmodel.getcallbackinfo.html
https://www.mathworks.com/help/releases/R2016a/rtw/ref/simulink.protectedmodel.callback-class.html

Model Architecture and Design

2 To create your protected model, call the Simulink.ModelReference.protect function. To
specify a cell array of callbacks to include in the model, use the 'Callbacks' option.

For example, to create a protected model that specifies a callback for simulation:
callbackForSim = Simulink.ProtectedModel.Callback('PreAccess"',

'SIM', 'disp(myTestSim)')
Simulink.ModelReference.protect('myModel', 'Callbacks', {callbackForSim});

When you simulate the protected model, the callback is triggered before extraction of the simulation
MEX-file:

sim('myModel"')
myTestSim
To create a protected model that specifies a callback for code generation:

callbackForCodeGen = Simulink.ProtectedModel.Callback('Build’,
"CODEGEN', 'disp(myTestCodeGen)"')
Simulink.ModelReference.protect('myModel', 'Mode', 'CodeGeneration',...
"Callbacks', {callbackForCodeGen});

Configure the callback to specify the override option:

callbackForCodeGen.OverrideBuild = true

When you generate code for the protected model, the callback is triggered during the build of the
ERT target. The build does not occur due to the override defined in the callback:

rtwbuild('myModel"')
myTestCG

For more information, see Define Callbacks for Protected Model.

Simulink Coder Student Access: Obtain Simulink Coder as student-use
add-on product or with MATLAB Primary and Secondary School Suite

Starting with R2016a, Simulink Coder is available for purchase as an add-on product for student-use
software: MATLAB and Simulink Student Suite™ and MATLAB Student. Student-use software
provides the same tools that professional engineers and scientists use. Students use the software to
develop skills that help them excel in courses and prepare for careers.

Starting with R20164a, Simulink Coder is included in the MATLAB Primary and Secondary School
Suite.

Model Block Virtual Buses: Interface to Model blocks by using virtual
buses, reducing data copies in the generated code

In Simulink, you can create virtual bus signals to exchange signal data between a referenced model
and the parent model. You can use a virtual bus as an input to the Model block or as a root-level
output of the referenced model.

Previously, Simulink converted the virtual bus to a nonvirtual bus. In the code that you generated
from the parent model, the parent model algorithm passed the input signal data to the referenced

14-3

https://www.mathworks.com/help/releases/R2016a/rtw/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2016a/rtw/ug/define-callbacks-for-protected-model.html

R2016a

14-4

model step or output function as a structure. The parent algorithm copied the individual outputs of
the upstream block calculations to the structure fields before calling the referenced model function.
Similarly, the parent algorithm created and passed a separate structure to store the bus output of the
referenced model.

In R20164a, the models exchange the signal data through multiple variables or pointers, each
corresponding to a signal element of the bus, instead of a structure. This interface improves the
efficiency of the generated code by eliminating the memory consumption of the structure. The code
appears and functions as it would if you used multiple signal lines instead of a virtual bus.

For example, suppose that you created a parent model myTopModel and a referenced model
mySubModel in R2015b.

Model Architecture and Design

'Pi rmyTopModel - Simulink

File Edit View Display Diagram Simulation Analysis Code Tools Help
@:v gg@vv@%{;gu[} v 10.0 »@ v
myTopModel
(] myTanndeI 3 -
LD
= inputOne
in
" mySubModel Out] Out
[2x3] 318}
[2 P N1 [2x3]
n - inputTwo [2x3] N Dut%
Model
203
2] Out2
C),
- = inputThree
-H
»
Ready 159% FixedStepDiscrete
L, mySubModel - Simulink =
File Edit View Display Diagram Simulation Analysis Code Tools Help
- = * =5 * * | 10.0 » - -
mySubModel
(] mySuandeI -
. (1)
) Out1
= Gain
Ci) <inputOne>
In1 <inputTwo=
0
-5 Out2
Gain1
>
Ready 168% FixedStepDiscrete

14-5

R2016a

14-6

In R2015b and in R2016a, when you use a bus signal as the input to a referenced model, you must
use a Simulink.Bus object as the output data type of the Inport block in the referenced model.
Suppose that you created a bus object named myBusType in the base workspace.

When you generated code from the parent model, the generated algorithm copied the signal data
from the Inport blocks to the fields of a local structure variable,

rtb BusConversion InsertedFor_ M, and passed the structure to the referenced model step
function.

/* Model step function */

void myTopModel step(void)

{
myBusType rtb BusConversion InsertedFor M;
int32 T i;

rtb_BusConversion InsertedFor M.inputOne = myTopModel U.inputOne;

for (i =0; i <6; i++) {
rtb_BusConversion InsertedFor M.inputTwo[i] = myTopModel U.inputTwo[i];

}
rtb BusConversion InsertedFor M.inputThree = myTopModel U.inputThree;

mySubModel (&rtb_BusConversion InsertedFor M, &myTopModel Y.Outl,
&myTopModel Y.0ut2[0]);
}

The code is inefficient because:

* The local structure variable consumes redundant memory for storing the input signal data,
including all of the elements of the nonscalar signal inputTwo.

* Even though the referenced model algorithm does not require the signal inputThree, the
structure consumes memory for storing the field inputThree.

In R20164a, the parent model algorithm passes the signals inputOne and inputTwo to the
referenced model as individual arguments. The code does not allocate memory for a structure
variable.

void myTopModel step(void)

mySubModel (&myTopModel U.inputOne, &myTopModel U.inputTwo[O],
&myTopModel Y.Outl, &myTopModel Y.Out2[0]);
}

In general, a virtual bus is a modeling convenience that does not affect the generated code. To
package signals into a structure in the generated code, use a nonvirtual bus.

For information about changes to modeling in Simulink, including information about how to upgrade
models to R20164a, see Virtual Bus Signals Across Model Reference Boundaries: Use virtual bus
signals as inputs or outputs of a referenced model.

Compatibility Considerations

In R2015b and in R20164a, the code that you generate from a model represents root-level input and
output virtual buses as structures. In R2016a, when you generate code from a parent model, the

https://www.mathworks.com/help/releases/R2016a/simulink/release-notes.html#bu5jnrv-1
https://www.mathworks.com/help/releases/R2016a/simulink/release-notes.html#bu5jnrv-1

Model Architecture and Design

referenced model step or output function exchanges virtual bus signal data by passing individual
arguments instead of structures. When you use a model as a referenced model, the generated code
algorithm has a different interface than it does when you generate code directly from the model.

For example, suppose that in the model mySubModel you set Configuration Parameters > Code
Generation > Interface > Code interface packaging to Reusable function. In R20164, if you
generate code from mySubModel instead of myTopModel, the generated step function uses a
different interface:

extern void mySubModel step(RT_MODEL mySubModel T *const mySubModel M);

The structure type RT_MODEL mySubModel T contains a substructure ModelData, which contains a
substructure inputs of the type ExtU mySubModel T. The structure type ExtU mySubModel T
contains a substructure Inl of the type myBusType.

typedef struct {
myBusType Inl;
} ExtU _mySubModel T;

To generate consistent interfaces that use structures whether you use the model as a referenced
model or as a standalone model, use nonvirtual buses instead of virtual buses. The generated code
represents the nonvirtual bus signals as structures. To use nonvirtual buses:

* Inroot-level Inport block dialog boxes, select Output as nonvirtual bus.
* Inroot-level Outport block dialog boxes, select Output as nonvirtual bus in parent model.

14-7

R2016a

Data, Function, and File Definition

14-8

Tolerance of data type mismatch between bus elements and tunable
structure fields

In Simulink, you can use a MATLAB structure to initialize the elements of a bus signal, or to drive a
bus signal from a Constant block. Previously, if you configured the structure to appear in the
generated code as a tunable global structure, you matched the numeric data types of the fields with
those of the corresponding bus elements. If you did not match the data types, the code generator
displayed an error.

In R20164a, the generated code algorithm uses explicit typecasts to reconcile the data type
mismatches. As you create and experiment with a model, you can use default doubles to set the
structure field values, and specify data types only for the bus elements.

To improve performance and readability of the generated code by avoiding typecasts, floating-point
structure fields, and field-by-field assignment operations, match the data types of tunable structure
fields with those of the corresponding bus elements. See Control Data Types of Initial Condition
Structure Fields.

In R2016a, the Model Advisor check Check for partial structure parameter usage with bus
signals has a new name, Check structure parameter usage with bus signals. Use this check to
discover potential inefficient typecasts due to mismatched data types. For more information, see
Check structure parameter usage with bus signals.

Model Advisor check for data type mismatches between bus elements
and structure fields

In R20164a, you can generate code if the numeric data types of bus signal elements do not match
those of the corresponding fields of an initial condition structure. Previously, the code generator
displayed an error if the initial condition appeared in the code as a tunable global structure. For more
information, see “Tolerance of data type mismatch between bus elements and tunable structure
fields” on page 14-8.

The Model Advisor check Check for partial structure parameter usage with bus signals has a
new name, Check structure parameter usage with bus signals. The check has a new
programmatic ID, mathworks.design.MismatchedBusParams. Your scripts that use the old ID
still work. Consider replacing the old ID with the new ID. Before you generate code from a model, use
this check to discover potential inefficient typecasts due to mismatched data types. For more
information, see Check structure parameter usage with bus signals.

Simplified method to apply storage classes to signals and states

Previously, you applied storage classes and custom storage classes to signals and states by selecting a
package and a storage class in the Signal Properties dialog box or on the State Attributes tab in a
block dialog box. With the default package, None, you could select one of three built-in storage
classes. You could select a package to enable custom storage classes. For example, in the Signal
Properties dialog box, you selected a package and storage class by using the drop-down lists
Package and Storage class.

https://www.mathworks.com/help/releases/R2016a/simulink/ug/buses-in-generated-code.html#buxv6qs-1
https://www.mathworks.com/help/releases/R2016a/simulink/ug/buses-in-generated-code.html#buxv6qs-1
https://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bsdg0xy-1
https://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bsdg0xy-1

Data, Function, and File Definition

If you set the package to None, you could select a storage type qualifier for the variable in the
generated code.

In R20164a, you use a simplified method to apply storage classes and custom storage classes to signals
and states. To apply storage classes, see Control Signals and States in Code by Applying Storage
Classes. To apply custom storage classes, which require an Embedded Coder license, see Control
Data Representation by Applying Custom Storage Classes.

Storage Classes

In R20164a, the drop-down list Signal object class replaces the drop-down list Package. The default
value for this new list is Simulink.Signal, which allows you to select storage classes and custom
storage classes from the built-in package Simulink. Use the new list to choose a different class of
signal object, for example mpt.Signal. You can then select a custom storage class that the package
mpt defines.

Storage Type Qualifiers

In R20164, if a signal or state does not already use a code generation storage type qualifier, the
option Storage type qualifier does not appear in the Signal Properties dialog box or on the State
Attributes tab in the block dialog box.

To apply storage type qualifiers, use custom storage classes and memory sections.
Embedded Signal Objects

When you upgrade a model from a previous release to R20164a, signals and states for which you
previously set Package to None and Storage class to a storage class other than Auto acquire an
embedded Simulink.Signal object. Use the functions get param and set param to interact with
the embedded signal object through the programmatic parameters SignalObject (for block output
ports) and StateSignalObject (for block states).

You can also continue to use the programmatic parameters StorageClass and
StateStorageClass to apply storage classes. When you use these parameters, the new storage
class applies to the embedded signal object. You can apply a basic storage class, such as
ExportedGlobal, by writing fewer lines of code. To apply a custom storage class, interact with the
embedded signal object instead.

Compatibility Considerations

* In the Simulink Preferences dialog box, the Data Management Defaults pane no longer
appears.

For the Package option that you previously set through the Data Management Defaults pane,
the equivalent programmatic parameter DefaultDataPackage will be removed in a future
release. In R20164a, setting the parameter generates a warning. If you wrote scripts that use this
parameter, remove the parameter from the scripts. For example, if your script contains this line of
code:

set param(0, 'DefaultDataPackage’, 'mpt")

* Unless you already set the option value in a previous release, the option Storage type qualifier is
hidden in the Signal Properties dialog box and on the State Attributes tab in block dialog boxes.

14-9

https://www.mathworks.com/help/releases/R2016a/rtw/ug/signal-objects.html
https://www.mathworks.com/help/releases/R2016a/rtw/ug/signal-objects.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/apply-custom-storage-classes.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/apply-custom-storage-classes.html

R2016a

14-10

Conflict between different storage classes applied to same signal

Previously, you could apply the storage class SimulinkGlobal to a signal line, and then apply a
storage class other than Auto to a downstream or upstream line that represented the same signal
data.

For example, suppose you applied the storage class SimulinkGlobal to a signal line that you
connected to an Outport block inside a subsystem. Outside the subsystem, you could apply the
storage class ImportedExtern to the signal line that the corresponding output port drives. When
you generated code from the model, the signal data used the storage class ImportedExtern.

In R2016a, the model generates an error.

Compatibility Considerations

If you open a model that you created in a previous version, the model generates an error if you
previously configured conflicting storage classes for a signal.

To resolve the error, set the storage class of the signal line from SimulinkGlobal to Auto. The
signal data uses the other storage class.

Alternatively, set the storage class from SimulinkGlobal to the other storage class. If you later
want to change the storage class for the signal data, you must remember to change the storage
classes for both signal lines.

Visibility and functionality changes for programmatic properties of
data objects
With objects of the class Simulink.CoderInfo, you can specify code generation settings for data

objects, which include objects of the classes Simulink.Parameter and Simulink.Signal. The
table summarizes changes to the programmatic properties of Simulink.CoderInfo objects.

Behavior Change For These Properties

If you set the property StorageClass to * Alias
'‘Auto’, these properties are hidden. Attempting |, a1 ignment
to set them to a value other than the default value

generates an error. * TypeQualifier

If you set any of these properties to a value other
than the default value, setting the property
StorageClass to 'Auto' generates a warning.
The object sets the property value to the default
value.

If you do not set the property StorageClass to |CustomStorageClass
"Custom’, setting the property
CustomStorageClass to a value other than the
default value generates a warning.

Compatibility Considerations

If you have scripts that set the properties of Simulink.CoderInfo objects, make sure that the
scripts do not generate unnecessary warnings or errors in R2016a. For example, before you set the

Data, Function, and File Definition

value of the property CustomStorageClass, set the value of the property StorageClass to
"Custom’.

14-11

R2016a

Code Generation

Simplified Configuration Parameters: Configure model more easily via
streamlined code generation panes

In the Configuration Parameters dialog box, streamlined category panes display only configuration
parameters that you are most likely to use when configuring your model for code generation.

The category panes, previously referred to as the Category view, are now available on the Commonly
Used Parameters tab. The All Parameters tab, previously referred to as the List view, provides the
complete list of parameters in the model configuration set.

£% Configuration Parameters: vdp/Configuration (Active) EI@
% Commonly Used Parameters | = all Parameters
Selact: Simulation time
Solver Start time: 0.0 Stop time: 20

14-12

Data Import/Export

-+ Optimization Solver options

- Diagnostics
Hardware Implementation Type: |Variable-step vl Solver: |0de45 (Dormand-Prince) -
Model Referencing
Simulation Target » Additional options

- Code Generation

Compatibility Considerations

Following are the configuration parameters that have moved to the All Parameters tab or moved to
a different pane.

Note Parameters that are removed from a pane are still available for configuration on the All
Parameters tab. To locate a parameter on this tab, use either the search box or the Category filter.

Code Generation Pane
The following are moved to the All Parameters tab:

+ Ignore custom storage classes parameter
+ Ignore test point signals parameter
* Validate button for Toolchain parameter

Code Generation > Interface Pane

The following parameters are moved to the All Parameters tab:

* Standard math library
* Support: non-inlined S-functions
* Multiword type definitions

Code Generation

* Maximum word length

* Use dynamic memory allocation for model initialization
* Classic call interface

* Single output/update function

* Terminate function required

* Combine signal/state structures

* Internal data visibility

* Internal data access

* Generate destructor

* Use dynamic memory allocation for model block instantiation
* MAT-ile logging

* MAT-file variable name modifier

Code Generation > Debug Pane

The pane is removed and its parameters are moved to the All Parameters tab:

* Profile TLC

* Verbose build

* Retain .rtw file

* Enable TLC assertion

* Start TLC coverage when generating code
* Start TLC debugger when generating code

Data Import/Export Pane

The Enable live streaming of selected signal to Simulation Data Inspector parameter is moved
to the All Parameters tab.

The following parameters are available by clicking Additional Parameters at the bottom of the
pane:

* Limit data points to last
* Decimation

* Output options

* Refine factor

Diagnostics Pane

The following parameter is moved to the All Parameters tab:

* Solver data inconsistency

Diagnostics > Data Validity Pane

The following parameters are moved to the All Parameters tab:

* Array bounds exceeded

14-13

R2016a

14-14

* Model verification block enabling

* Check preactivation output of execution context

* Check runtime output of execution context

* Check undefined subsystem initial output

* Detect multiple driving blocks executing at the same time step
* Underspecified initialization detection

Diagnostics > Saving Pane
The pane is removed and its parameters are moved to the All Parameters tab:

* Block diagram contains disabled library links
* Block diagram contains parameterized library links

Diagnostics > Solver Pane

The following parameters are moved to the Diagnostics > Sample Time pane:

* Sample hit time adjusting
* Unspecified inheritability of sample time

The following parameter is moved to the Diagnostics > Compatibility pane:
* SimState object from earlier release
Optimization Pane

The following parameters are moved to the All Parameters tab:

* Remove code from floating-point to integer conversions with saturation that maps NaN
to zero

* Compiler optimization level

* Verbose accelerator builds

* Implement logic signals as Boolean data (vs. double)

* Block reduction

* Conditional input branch execution

* Use memset to initialize floats and doubles to 0.0

Optimization > Signals and Parameters Pane
The following parameters are moved to the All Parameters tab:

* Signal storage reuse

* Enable local block outputs

* Reuse local block outputs

* Optimize global data access

* Reuse global block outputs

* Eliminate superfluous local variables (Expression folding)

Code Generation

* Simplify array indexing
Simulation Target Pane
The following parameters are moved to the All Parameters tab:

* Echo expressions without semicolons

* Simulation target build mode

* Ensure responsiveness

* Generate typedefs for imported bus and enumeration types
* Ensure memory integrity

Simulation Target > Custom Code Pane
The pane is removed and its parameters are moved to the Simulation Target pane:

* Header file

* Initialize function

* Source file

¢ Terminate function

* Parse custom code symbols
* Include directories

* Libraries

* Source files

* Defines

Simulation Target > Symbols Pane
The pane is removed and its parameter is moved to the Simulation Target pane:

* Reserved names

Add macro definitions to custom code

Previously, to add macro definitions—tokens with or without values submitted on the compiler
command line—for toolchain approach builds, you directly modified the compiler command line in
Configuration Parameters > Code Generation > Build process. In this section of the Code
Generation pane, you set the Build configuration parameter value to Specify and added macro
definitions to the compiler options. With the new